Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴 ) → 𝐴 ∈ ω ) |
2 |
|
peano2 |
⊢ ( 𝐴 ∈ ω → suc 𝐴 ∈ ω ) |
3 |
|
enrefnn |
⊢ ( suc 𝐴 ∈ ω → suc 𝐴 ≈ suc 𝐴 ) |
4 |
2 3
|
syl |
⊢ ( 𝐴 ∈ ω → suc 𝐴 ≈ suc 𝐴 ) |
5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴 ) → suc 𝐴 ≈ suc 𝐴 ) |
6 |
|
simpr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴 ) → 𝐵 ∈ suc 𝐴 ) |
7 |
|
dif1en |
⊢ ( ( 𝐴 ∈ ω ∧ suc 𝐴 ≈ suc 𝐴 ∧ 𝐵 ∈ suc 𝐴 ) → ( suc 𝐴 ∖ { 𝐵 } ) ≈ 𝐴 ) |
8 |
1 5 6 7
|
syl3anc |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴 ) → ( suc 𝐴 ∖ { 𝐵 } ) ≈ 𝐴 ) |
9 |
|
nnfi |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ Fin ) |
10 |
|
ensymfib |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 ≈ ( suc 𝐴 ∖ { 𝐵 } ) ↔ ( suc 𝐴 ∖ { 𝐵 } ) ≈ 𝐴 ) ) |
11 |
1 9 10
|
3syl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴 ) → ( 𝐴 ≈ ( suc 𝐴 ∖ { 𝐵 } ) ↔ ( suc 𝐴 ∖ { 𝐵 } ) ≈ 𝐴 ) ) |
12 |
8 11
|
mpbird |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴 ) → 𝐴 ≈ ( suc 𝐴 ∖ { 𝐵 } ) ) |