Step |
Hyp |
Ref |
Expression |
1 |
|
nnord |
⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) |
2 |
|
nordeq |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝐴 ≠ 𝐵 ) |
3 |
|
disjsn2 |
⊢ ( 𝐴 ≠ 𝐵 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ ) |
4 |
2 3
|
syl |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ ) |
5 |
1 4
|
sylan |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴 ) → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ ) |
6 |
|
undif4 |
⊢ ( ( { 𝐴 } ∩ { 𝐵 } ) = ∅ → ( { 𝐴 } ∪ ( 𝐴 ∖ { 𝐵 } ) ) = ( ( { 𝐴 } ∪ 𝐴 ) ∖ { 𝐵 } ) ) |
7 |
|
df-suc |
⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) |
8 |
7
|
equncomi |
⊢ suc 𝐴 = ( { 𝐴 } ∪ 𝐴 ) |
9 |
8
|
difeq1i |
⊢ ( suc 𝐴 ∖ { 𝐵 } ) = ( ( { 𝐴 } ∪ 𝐴 ) ∖ { 𝐵 } ) |
10 |
6 9
|
eqtr4di |
⊢ ( ( { 𝐴 } ∩ { 𝐵 } ) = ∅ → ( { 𝐴 } ∪ ( 𝐴 ∖ { 𝐵 } ) ) = ( suc 𝐴 ∖ { 𝐵 } ) ) |
11 |
5 10
|
syl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴 ) → ( { 𝐴 } ∪ ( 𝐴 ∖ { 𝐵 } ) ) = ( suc 𝐴 ∖ { 𝐵 } ) ) |