Metamath Proof Explorer


Theorem phplem1

Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. (Contributed by NM, 26-May-1998) Avoid ax-pow . (Revised by BTernaryTau, 23-Sep-2024)

Ref Expression
Assertion phplem1 ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴 ) → 𝐴 ≈ ( suc 𝐴 ∖ { 𝐵 } ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴 ) → 𝐴 ∈ ω )
2 peano2 ( 𝐴 ∈ ω → suc 𝐴 ∈ ω )
3 enrefnn ( suc 𝐴 ∈ ω → suc 𝐴 ≈ suc 𝐴 )
4 2 3 syl ( 𝐴 ∈ ω → suc 𝐴 ≈ suc 𝐴 )
5 4 adantr ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴 ) → suc 𝐴 ≈ suc 𝐴 )
6 simpr ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴 ) → 𝐵 ∈ suc 𝐴 )
7 dif1en ( ( 𝐴 ∈ ω ∧ suc 𝐴 ≈ suc 𝐴𝐵 ∈ suc 𝐴 ) → ( suc 𝐴 ∖ { 𝐵 } ) ≈ 𝐴 )
8 1 5 6 7 syl3anc ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴 ) → ( suc 𝐴 ∖ { 𝐵 } ) ≈ 𝐴 )
9 nnfi ( 𝐴 ∈ ω → 𝐴 ∈ Fin )
10 ensymfib ( 𝐴 ∈ Fin → ( 𝐴 ≈ ( suc 𝐴 ∖ { 𝐵 } ) ↔ ( suc 𝐴 ∖ { 𝐵 } ) ≈ 𝐴 ) )
11 1 9 10 3syl ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴 ) → ( 𝐴 ≈ ( suc 𝐴 ∖ { 𝐵 } ) ↔ ( suc 𝐴 ∖ { 𝐵 } ) ≈ 𝐴 ) )
12 8 11 mpbird ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴 ) → 𝐴 ≈ ( suc 𝐴 ∖ { 𝐵 } ) )