| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phplem2.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | bren | ⊢ ( suc  𝐴  ≈  suc  𝐵  ↔  ∃ 𝑓 𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵 ) | 
						
							| 3 |  | f1of1 | ⊢ ( 𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵  →  𝑓 : suc  𝐴 –1-1→ suc  𝐵 ) | 
						
							| 4 |  | nnfi | ⊢ ( 𝐴  ∈  ω  →  𝐴  ∈  Fin ) | 
						
							| 5 |  | sssucid | ⊢ 𝐴  ⊆  suc  𝐴 | 
						
							| 6 |  | f1imaenfi | ⊢ ( ( 𝑓 : suc  𝐴 –1-1→ suc  𝐵  ∧  𝐴  ⊆  suc  𝐴  ∧  𝐴  ∈  Fin )  →  ( 𝑓  “  𝐴 )  ≈  𝐴 ) | 
						
							| 7 | 5 6 | mp3an2 | ⊢ ( ( 𝑓 : suc  𝐴 –1-1→ suc  𝐵  ∧  𝐴  ∈  Fin )  →  ( 𝑓  “  𝐴 )  ≈  𝐴 ) | 
						
							| 8 | 3 4 7 | syl2anr | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵 )  →  ( 𝑓  “  𝐴 )  ≈  𝐴 ) | 
						
							| 9 |  | ensymfib | ⊢ ( 𝐴  ∈  Fin  →  ( 𝐴  ≈  ( 𝑓  “  𝐴 )  ↔  ( 𝑓  “  𝐴 )  ≈  𝐴 ) ) | 
						
							| 10 | 4 9 | syl | ⊢ ( 𝐴  ∈  ω  →  ( 𝐴  ≈  ( 𝑓  “  𝐴 )  ↔  ( 𝑓  “  𝐴 )  ≈  𝐴 ) ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵 )  →  ( 𝐴  ≈  ( 𝑓  “  𝐴 )  ↔  ( 𝑓  “  𝐴 )  ≈  𝐴 ) ) | 
						
							| 12 | 8 11 | mpbird | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵 )  →  𝐴  ≈  ( 𝑓  “  𝐴 ) ) | 
						
							| 13 |  | nnord | ⊢ ( 𝐴  ∈  ω  →  Ord  𝐴 ) | 
						
							| 14 |  | orddif | ⊢ ( Ord  𝐴  →  𝐴  =  ( suc  𝐴  ∖  { 𝐴 } ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝐴  ∈  ω  →  𝐴  =  ( suc  𝐴  ∖  { 𝐴 } ) ) | 
						
							| 16 | 15 | imaeq2d | ⊢ ( 𝐴  ∈  ω  →  ( 𝑓  “  𝐴 )  =  ( 𝑓  “  ( suc  𝐴  ∖  { 𝐴 } ) ) ) | 
						
							| 17 |  | f1ofn | ⊢ ( 𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵  →  𝑓  Fn  suc  𝐴 ) | 
						
							| 18 | 1 | sucid | ⊢ 𝐴  ∈  suc  𝐴 | 
						
							| 19 |  | fnsnfv | ⊢ ( ( 𝑓  Fn  suc  𝐴  ∧  𝐴  ∈  suc  𝐴 )  →  { ( 𝑓 ‘ 𝐴 ) }  =  ( 𝑓  “  { 𝐴 } ) ) | 
						
							| 20 | 17 18 19 | sylancl | ⊢ ( 𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵  →  { ( 𝑓 ‘ 𝐴 ) }  =  ( 𝑓  “  { 𝐴 } ) ) | 
						
							| 21 | 20 | difeq2d | ⊢ ( 𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵  →  ( ( 𝑓  “  suc  𝐴 )  ∖  { ( 𝑓 ‘ 𝐴 ) } )  =  ( ( 𝑓  “  suc  𝐴 )  ∖  ( 𝑓  “  { 𝐴 } ) ) ) | 
						
							| 22 |  | imadmrn | ⊢ ( 𝑓  “  dom  𝑓 )  =  ran  𝑓 | 
						
							| 23 | 22 | eqcomi | ⊢ ran  𝑓  =  ( 𝑓  “  dom  𝑓 ) | 
						
							| 24 |  | f1ofo | ⊢ ( 𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵  →  𝑓 : suc  𝐴 –onto→ suc  𝐵 ) | 
						
							| 25 |  | forn | ⊢ ( 𝑓 : suc  𝐴 –onto→ suc  𝐵  →  ran  𝑓  =  suc  𝐵 ) | 
						
							| 26 | 24 25 | syl | ⊢ ( 𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵  →  ran  𝑓  =  suc  𝐵 ) | 
						
							| 27 |  | f1odm | ⊢ ( 𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵  →  dom  𝑓  =  suc  𝐴 ) | 
						
							| 28 | 27 | imaeq2d | ⊢ ( 𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵  →  ( 𝑓  “  dom  𝑓 )  =  ( 𝑓  “  suc  𝐴 ) ) | 
						
							| 29 | 23 26 28 | 3eqtr3a | ⊢ ( 𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵  →  suc  𝐵  =  ( 𝑓  “  suc  𝐴 ) ) | 
						
							| 30 | 29 | difeq1d | ⊢ ( 𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵  →  ( suc  𝐵  ∖  { ( 𝑓 ‘ 𝐴 ) } )  =  ( ( 𝑓  “  suc  𝐴 )  ∖  { ( 𝑓 ‘ 𝐴 ) } ) ) | 
						
							| 31 |  | dff1o3 | ⊢ ( 𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵  ↔  ( 𝑓 : suc  𝐴 –onto→ suc  𝐵  ∧  Fun  ◡ 𝑓 ) ) | 
						
							| 32 |  | imadif | ⊢ ( Fun  ◡ 𝑓  →  ( 𝑓  “  ( suc  𝐴  ∖  { 𝐴 } ) )  =  ( ( 𝑓  “  suc  𝐴 )  ∖  ( 𝑓  “  { 𝐴 } ) ) ) | 
						
							| 33 | 31 32 | simplbiim | ⊢ ( 𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵  →  ( 𝑓  “  ( suc  𝐴  ∖  { 𝐴 } ) )  =  ( ( 𝑓  “  suc  𝐴 )  ∖  ( 𝑓  “  { 𝐴 } ) ) ) | 
						
							| 34 | 21 30 33 | 3eqtr4rd | ⊢ ( 𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵  →  ( 𝑓  “  ( suc  𝐴  ∖  { 𝐴 } ) )  =  ( suc  𝐵  ∖  { ( 𝑓 ‘ 𝐴 ) } ) ) | 
						
							| 35 | 16 34 | sylan9eq | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵 )  →  ( 𝑓  “  𝐴 )  =  ( suc  𝐵  ∖  { ( 𝑓 ‘ 𝐴 ) } ) ) | 
						
							| 36 | 12 35 | breqtrd | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵 )  →  𝐴  ≈  ( suc  𝐵  ∖  { ( 𝑓 ‘ 𝐴 ) } ) ) | 
						
							| 37 |  | fnfvelrn | ⊢ ( ( 𝑓  Fn  suc  𝐴  ∧  𝐴  ∈  suc  𝐴 )  →  ( 𝑓 ‘ 𝐴 )  ∈  ran  𝑓 ) | 
						
							| 38 | 17 18 37 | sylancl | ⊢ ( 𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵  →  ( 𝑓 ‘ 𝐴 )  ∈  ran  𝑓 ) | 
						
							| 39 | 25 | eleq2d | ⊢ ( 𝑓 : suc  𝐴 –onto→ suc  𝐵  →  ( ( 𝑓 ‘ 𝐴 )  ∈  ran  𝑓  ↔  ( 𝑓 ‘ 𝐴 )  ∈  suc  𝐵 ) ) | 
						
							| 40 | 24 39 | syl | ⊢ ( 𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵  →  ( ( 𝑓 ‘ 𝐴 )  ∈  ran  𝑓  ↔  ( 𝑓 ‘ 𝐴 )  ∈  suc  𝐵 ) ) | 
						
							| 41 | 38 40 | mpbid | ⊢ ( 𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵  →  ( 𝑓 ‘ 𝐴 )  ∈  suc  𝐵 ) | 
						
							| 42 |  | phplem1 | ⊢ ( ( 𝐵  ∈  ω  ∧  ( 𝑓 ‘ 𝐴 )  ∈  suc  𝐵 )  →  𝐵  ≈  ( suc  𝐵  ∖  { ( 𝑓 ‘ 𝐴 ) } ) ) | 
						
							| 43 | 41 42 | sylan2 | ⊢ ( ( 𝐵  ∈  ω  ∧  𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵 )  →  𝐵  ≈  ( suc  𝐵  ∖  { ( 𝑓 ‘ 𝐴 ) } ) ) | 
						
							| 44 |  | nnfi | ⊢ ( 𝐵  ∈  ω  →  𝐵  ∈  Fin ) | 
						
							| 45 |  | ensymfib | ⊢ ( 𝐵  ∈  Fin  →  ( 𝐵  ≈  ( suc  𝐵  ∖  { ( 𝑓 ‘ 𝐴 ) } )  ↔  ( suc  𝐵  ∖  { ( 𝑓 ‘ 𝐴 ) } )  ≈  𝐵 ) ) | 
						
							| 46 | 44 45 | syl | ⊢ ( 𝐵  ∈  ω  →  ( 𝐵  ≈  ( suc  𝐵  ∖  { ( 𝑓 ‘ 𝐴 ) } )  ↔  ( suc  𝐵  ∖  { ( 𝑓 ‘ 𝐴 ) } )  ≈  𝐵 ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝐵  ∈  ω  ∧  𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵 )  →  ( 𝐵  ≈  ( suc  𝐵  ∖  { ( 𝑓 ‘ 𝐴 ) } )  ↔  ( suc  𝐵  ∖  { ( 𝑓 ‘ 𝐴 ) } )  ≈  𝐵 ) ) | 
						
							| 48 | 43 47 | mpbid | ⊢ ( ( 𝐵  ∈  ω  ∧  𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵 )  →  ( suc  𝐵  ∖  { ( 𝑓 ‘ 𝐴 ) } )  ≈  𝐵 ) | 
						
							| 49 |  | entrfil | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐴  ≈  ( suc  𝐵  ∖  { ( 𝑓 ‘ 𝐴 ) } )  ∧  ( suc  𝐵  ∖  { ( 𝑓 ‘ 𝐴 ) } )  ≈  𝐵 )  →  𝐴  ≈  𝐵 ) | 
						
							| 50 | 4 49 | syl3an1 | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐴  ≈  ( suc  𝐵  ∖  { ( 𝑓 ‘ 𝐴 ) } )  ∧  ( suc  𝐵  ∖  { ( 𝑓 ‘ 𝐴 ) } )  ≈  𝐵 )  →  𝐴  ≈  𝐵 ) | 
						
							| 51 | 48 50 | syl3an3 | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐴  ≈  ( suc  𝐵  ∖  { ( 𝑓 ‘ 𝐴 ) } )  ∧  ( 𝐵  ∈  ω  ∧  𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵 ) )  →  𝐴  ≈  𝐵 ) | 
						
							| 52 | 51 | 3expa | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐴  ≈  ( suc  𝐵  ∖  { ( 𝑓 ‘ 𝐴 ) } ) )  ∧  ( 𝐵  ∈  ω  ∧  𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵 ) )  →  𝐴  ≈  𝐵 ) | 
						
							| 53 | 36 52 | syldanl | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵 )  ∧  ( 𝐵  ∈  ω  ∧  𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵 ) )  →  𝐴  ≈  𝐵 ) | 
						
							| 54 | 53 | anandirs | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  ∧  𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵 )  →  𝐴  ≈  𝐵 ) | 
						
							| 55 | 54 | ex | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵  →  𝐴  ≈  𝐵 ) ) | 
						
							| 56 | 55 | exlimdv | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( ∃ 𝑓 𝑓 : suc  𝐴 –1-1-onto→ suc  𝐵  →  𝐴  ≈  𝐵 ) ) | 
						
							| 57 | 2 56 | biimtrid | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( suc  𝐴  ≈  suc  𝐵  →  𝐴  ≈  𝐵 ) ) |