| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phplem2OLD.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
phplem2OLD.2 |
⊢ 𝐵 ∈ V |
| 3 |
|
elsuci |
⊢ ( 𝐵 ∈ suc 𝐴 → ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) |
| 4 |
1 2
|
phplem2OLD |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴 ) → 𝐴 ≈ ( suc 𝐴 ∖ { 𝐵 } ) ) |
| 5 |
1
|
enref |
⊢ 𝐴 ≈ 𝐴 |
| 6 |
|
nnord |
⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) |
| 7 |
|
orddif |
⊢ ( Ord 𝐴 → 𝐴 = ( suc 𝐴 ∖ { 𝐴 } ) ) |
| 8 |
6 7
|
syl |
⊢ ( 𝐴 ∈ ω → 𝐴 = ( suc 𝐴 ∖ { 𝐴 } ) ) |
| 9 |
|
sneq |
⊢ ( 𝐴 = 𝐵 → { 𝐴 } = { 𝐵 } ) |
| 10 |
9
|
difeq2d |
⊢ ( 𝐴 = 𝐵 → ( suc 𝐴 ∖ { 𝐴 } ) = ( suc 𝐴 ∖ { 𝐵 } ) ) |
| 11 |
10
|
eqcoms |
⊢ ( 𝐵 = 𝐴 → ( suc 𝐴 ∖ { 𝐴 } ) = ( suc 𝐴 ∖ { 𝐵 } ) ) |
| 12 |
8 11
|
sylan9eq |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 = 𝐴 ) → 𝐴 = ( suc 𝐴 ∖ { 𝐵 } ) ) |
| 13 |
5 12
|
breqtrid |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 = 𝐴 ) → 𝐴 ≈ ( suc 𝐴 ∖ { 𝐵 } ) ) |
| 14 |
4 13
|
jaodan |
⊢ ( ( 𝐴 ∈ ω ∧ ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) → 𝐴 ≈ ( suc 𝐴 ∖ { 𝐵 } ) ) |
| 15 |
3 14
|
sylan2 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴 ) → 𝐴 ≈ ( suc 𝐴 ∖ { 𝐵 } ) ) |