Metamath Proof Explorer


Theorem phrel

Description: The class of all complex inner product spaces is a relation. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion phrel Rel CPreHilOLD

Proof

Step Hyp Ref Expression
1 phnv ( 𝑥 ∈ CPreHilOLD𝑥 ∈ NrmCVec )
2 1 ssriv CPreHilOLD ⊆ NrmCVec
3 nvrel Rel NrmCVec
4 relss ( CPreHilOLD ⊆ NrmCVec → ( Rel NrmCVec → Rel CPreHilOLD ) )
5 2 3 4 mp2 Rel CPreHilOLD