Step |
Hyp |
Ref |
Expression |
1 |
|
pidlnzb.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
pidlnzb.2 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
pidlnzb.3 |
⊢ 𝐾 = ( RSpan ‘ 𝑅 ) |
4 |
1 2 3
|
pidlnz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝐾 ‘ { 𝑋 } ) ≠ { 0 } ) |
5 |
4
|
3expa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑋 ≠ 0 ) → ( 𝐾 ‘ { 𝑋 } ) ≠ { 0 } ) |
6 |
|
sneq |
⊢ ( 𝑋 = 0 → { 𝑋 } = { 0 } ) |
7 |
6
|
fveq2d |
⊢ ( 𝑋 = 0 → ( 𝐾 ‘ { 𝑋 } ) = ( 𝐾 ‘ { 0 } ) ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑋 = 0 ) → ( 𝐾 ‘ { 𝑋 } ) = ( 𝐾 ‘ { 0 } ) ) |
9 |
3 2
|
rsp0 |
⊢ ( 𝑅 ∈ Ring → ( 𝐾 ‘ { 0 } ) = { 0 } ) |
10 |
9
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑋 = 0 ) → ( 𝐾 ‘ { 0 } ) = { 0 } ) |
11 |
8 10
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑋 = 0 ) → ( 𝐾 ‘ { 𝑋 } ) = { 0 } ) |
12 |
11
|
ex |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 = 0 → ( 𝐾 ‘ { 𝑋 } ) = { 0 } ) ) |
13 |
12
|
necon3d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐾 ‘ { 𝑋 } ) ≠ { 0 } → 𝑋 ≠ 0 ) ) |
14 |
13
|
imp |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐾 ‘ { 𝑋 } ) ≠ { 0 } ) → 𝑋 ≠ 0 ) |
15 |
5 14
|
impbida |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ≠ 0 ↔ ( 𝐾 ‘ { 𝑋 } ) ≠ { 0 } ) ) |