Step |
Hyp |
Ref |
Expression |
1 |
|
3cn |
⊢ 3 ∈ ℂ |
2 |
1
|
mulid2i |
⊢ ( 1 · 3 ) = 3 |
3 |
|
tru |
⊢ ⊤ |
4 |
|
0xr |
⊢ 0 ∈ ℝ* |
5 |
|
pirp |
⊢ π ∈ ℝ+ |
6 |
|
3rp |
⊢ 3 ∈ ℝ+ |
7 |
|
rpdivcl |
⊢ ( ( π ∈ ℝ+ ∧ 3 ∈ ℝ+ ) → ( π / 3 ) ∈ ℝ+ ) |
8 |
5 6 7
|
mp2an |
⊢ ( π / 3 ) ∈ ℝ+ |
9 |
|
rpxr |
⊢ ( ( π / 3 ) ∈ ℝ+ → ( π / 3 ) ∈ ℝ* ) |
10 |
8 9
|
ax-mp |
⊢ ( π / 3 ) ∈ ℝ* |
11 |
|
rpge0 |
⊢ ( ( π / 3 ) ∈ ℝ+ → 0 ≤ ( π / 3 ) ) |
12 |
8 11
|
ax-mp |
⊢ 0 ≤ ( π / 3 ) |
13 |
|
lbicc2 |
⊢ ( ( 0 ∈ ℝ* ∧ ( π / 3 ) ∈ ℝ* ∧ 0 ≤ ( π / 3 ) ) → 0 ∈ ( 0 [,] ( π / 3 ) ) ) |
14 |
4 10 12 13
|
mp3an |
⊢ 0 ∈ ( 0 [,] ( π / 3 ) ) |
15 |
|
ubicc2 |
⊢ ( ( 0 ∈ ℝ* ∧ ( π / 3 ) ∈ ℝ* ∧ 0 ≤ ( π / 3 ) ) → ( π / 3 ) ∈ ( 0 [,] ( π / 3 ) ) ) |
16 |
4 10 12 15
|
mp3an |
⊢ ( π / 3 ) ∈ ( 0 [,] ( π / 3 ) ) |
17 |
14 16
|
pm3.2i |
⊢ ( 0 ∈ ( 0 [,] ( π / 3 ) ) ∧ ( π / 3 ) ∈ ( 0 [,] ( π / 3 ) ) ) |
18 |
|
0re |
⊢ 0 ∈ ℝ |
19 |
18
|
a1i |
⊢ ( ⊤ → 0 ∈ ℝ ) |
20 |
|
pire |
⊢ π ∈ ℝ |
21 |
|
3re |
⊢ 3 ∈ ℝ |
22 |
|
3ne0 |
⊢ 3 ≠ 0 |
23 |
20 21 22
|
redivcli |
⊢ ( π / 3 ) ∈ ℝ |
24 |
23
|
a1i |
⊢ ( ⊤ → ( π / 3 ) ∈ ℝ ) |
25 |
|
efcn |
⊢ exp ∈ ( ℂ –cn→ ℂ ) |
26 |
25
|
a1i |
⊢ ( ⊤ → exp ∈ ( ℂ –cn→ ℂ ) ) |
27 |
|
iccssre |
⊢ ( ( 0 ∈ ℝ ∧ ( π / 3 ) ∈ ℝ ) → ( 0 [,] ( π / 3 ) ) ⊆ ℝ ) |
28 |
18 23 27
|
mp2an |
⊢ ( 0 [,] ( π / 3 ) ) ⊆ ℝ |
29 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
30 |
28 29
|
sstri |
⊢ ( 0 [,] ( π / 3 ) ) ⊆ ℂ |
31 |
|
resmpt |
⊢ ( ( 0 [,] ( π / 3 ) ) ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ↾ ( 0 [,] ( π / 3 ) ) ) = ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( i · 𝑥 ) ) ) |
32 |
30 31
|
mp1i |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ↾ ( 0 [,] ( π / 3 ) ) ) = ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( i · 𝑥 ) ) ) |
33 |
|
ssidd |
⊢ ( ⊤ → ℂ ⊆ ℂ ) |
34 |
|
ax-icn |
⊢ i ∈ ℂ |
35 |
|
simpr |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) |
36 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( i · 𝑥 ) ∈ ℂ ) |
37 |
34 35 36
|
sylancr |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( i · 𝑥 ) ∈ ℂ ) |
38 |
37
|
fmpttd |
⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) : ℂ ⟶ ℂ ) |
39 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
40 |
39
|
a1i |
⊢ ( ⊤ → ℂ ∈ { ℝ , ℂ } ) |
41 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
42 |
41
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → 1 ∈ ℂ ) |
43 |
40
|
dvmptid |
⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) ) |
44 |
34
|
a1i |
⊢ ( ⊤ → i ∈ ℂ ) |
45 |
40 35 42 43 44
|
dvmptcmul |
⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( i · 1 ) ) ) |
46 |
34
|
mulid1i |
⊢ ( i · 1 ) = i |
47 |
46
|
mpteq2i |
⊢ ( 𝑥 ∈ ℂ ↦ ( i · 1 ) ) = ( 𝑥 ∈ ℂ ↦ i ) |
48 |
45 47
|
eqtrdi |
⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ i ) ) |
49 |
48
|
dmeqd |
⊢ ( ⊤ → dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ) = dom ( 𝑥 ∈ ℂ ↦ i ) ) |
50 |
34
|
elexi |
⊢ i ∈ V |
51 |
|
eqid |
⊢ ( 𝑥 ∈ ℂ ↦ i ) = ( 𝑥 ∈ ℂ ↦ i ) |
52 |
50 51
|
dmmpti |
⊢ dom ( 𝑥 ∈ ℂ ↦ i ) = ℂ |
53 |
49 52
|
eqtrdi |
⊢ ( ⊤ → dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ) = ℂ ) |
54 |
|
dvcn |
⊢ ( ( ( ℂ ⊆ ℂ ∧ ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) : ℂ ⟶ ℂ ∧ ℂ ⊆ ℂ ) ∧ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ) = ℂ ) → ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
55 |
33 38 33 53 54
|
syl31anc |
⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
56 |
|
rescncf |
⊢ ( ( 0 [,] ( π / 3 ) ) ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ↾ ( 0 [,] ( π / 3 ) ) ) ∈ ( ( 0 [,] ( π / 3 ) ) –cn→ ℂ ) ) ) |
57 |
30 55 56
|
mpsyl |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ↾ ( 0 [,] ( π / 3 ) ) ) ∈ ( ( 0 [,] ( π / 3 ) ) –cn→ ℂ ) ) |
58 |
32 57
|
eqeltrrd |
⊢ ( ⊤ → ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( i · 𝑥 ) ) ∈ ( ( 0 [,] ( π / 3 ) ) –cn→ ℂ ) ) |
59 |
26 58
|
cncfmpt1f |
⊢ ( ⊤ → ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ∈ ( ( 0 [,] ( π / 3 ) ) –cn→ ℂ ) ) |
60 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
61 |
60
|
a1i |
⊢ ( ⊤ → ℝ ∈ { ℝ , ℂ } ) |
62 |
|
recn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) |
63 |
|
efcl |
⊢ ( ( i · 𝑥 ) ∈ ℂ → ( exp ‘ ( i · 𝑥 ) ) ∈ ℂ ) |
64 |
37 63
|
syl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( exp ‘ ( i · 𝑥 ) ) ∈ ℂ ) |
65 |
62 64
|
sylan2 |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → ( exp ‘ ( i · 𝑥 ) ) ∈ ℂ ) |
66 |
|
mulcl |
⊢ ( ( ( exp ‘ ( i · 𝑥 ) ) ∈ ℂ ∧ i ∈ ℂ ) → ( ( exp ‘ ( i · 𝑥 ) ) · i ) ∈ ℂ ) |
67 |
64 34 66
|
sylancl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( ( exp ‘ ( i · 𝑥 ) ) · i ) ∈ ℂ ) |
68 |
62 67
|
sylan2 |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → ( ( exp ‘ ( i · 𝑥 ) ) · i ) ∈ ℂ ) |
69 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
70 |
69
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
71 |
|
toponmax |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) → ℂ ∈ ( TopOpen ‘ ℂfld ) ) |
72 |
70 71
|
mp1i |
⊢ ( ⊤ → ℂ ∈ ( TopOpen ‘ ℂfld ) ) |
73 |
29
|
a1i |
⊢ ( ⊤ → ℝ ⊆ ℂ ) |
74 |
|
df-ss |
⊢ ( ℝ ⊆ ℂ ↔ ( ℝ ∩ ℂ ) = ℝ ) |
75 |
73 74
|
sylib |
⊢ ( ⊤ → ( ℝ ∩ ℂ ) = ℝ ) |
76 |
34
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → i ∈ ℂ ) |
77 |
|
efcl |
⊢ ( 𝑦 ∈ ℂ → ( exp ‘ 𝑦 ) ∈ ℂ ) |
78 |
77
|
adantl |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ℂ ) → ( exp ‘ 𝑦 ) ∈ ℂ ) |
79 |
|
dvef |
⊢ ( ℂ D exp ) = exp |
80 |
|
eff |
⊢ exp : ℂ ⟶ ℂ |
81 |
80
|
a1i |
⊢ ( ⊤ → exp : ℂ ⟶ ℂ ) |
82 |
81
|
feqmptd |
⊢ ( ⊤ → exp = ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) ) |
83 |
82
|
oveq2d |
⊢ ( ⊤ → ( ℂ D exp ) = ( ℂ D ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) ) ) |
84 |
79 83 82
|
3eqtr3a |
⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) ) |
85 |
|
fveq2 |
⊢ ( 𝑦 = ( i · 𝑥 ) → ( exp ‘ 𝑦 ) = ( exp ‘ ( i · 𝑥 ) ) ) |
86 |
40 40 37 76 78 78 48 84 85 85
|
dvmptco |
⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ) ) |
87 |
69 61 72 75 64 67 86
|
dvmptres3 |
⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) = ( 𝑥 ∈ ℝ ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ) ) |
88 |
28
|
a1i |
⊢ ( ⊤ → ( 0 [,] ( π / 3 ) ) ⊆ ℝ ) |
89 |
69
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
90 |
|
iccntr |
⊢ ( ( 0 ∈ ℝ ∧ ( π / 3 ) ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 0 [,] ( π / 3 ) ) ) = ( 0 (,) ( π / 3 ) ) ) |
91 |
18 24 90
|
sylancr |
⊢ ( ⊤ → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 0 [,] ( π / 3 ) ) ) = ( 0 (,) ( π / 3 ) ) ) |
92 |
61 65 68 87 88 89 69 91
|
dvmptres2 |
⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 0 (,) ( π / 3 ) ) ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ) ) |
93 |
92
|
dmeqd |
⊢ ( ⊤ → dom ( ℝ D ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) = dom ( 𝑥 ∈ ( 0 (,) ( π / 3 ) ) ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ) ) |
94 |
|
ovex |
⊢ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ∈ V |
95 |
|
eqid |
⊢ ( 𝑥 ∈ ( 0 (,) ( π / 3 ) ) ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ) = ( 𝑥 ∈ ( 0 (,) ( π / 3 ) ) ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ) |
96 |
94 95
|
dmmpti |
⊢ dom ( 𝑥 ∈ ( 0 (,) ( π / 3 ) ) ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ) = ( 0 (,) ( π / 3 ) ) |
97 |
93 96
|
eqtrdi |
⊢ ( ⊤ → dom ( ℝ D ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) = ( 0 (,) ( π / 3 ) ) ) |
98 |
|
1re |
⊢ 1 ∈ ℝ |
99 |
98
|
a1i |
⊢ ( ⊤ → 1 ∈ ℝ ) |
100 |
92
|
fveq1d |
⊢ ( ⊤ → ( ( ℝ D ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ( 0 (,) ( π / 3 ) ) ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ) ‘ 𝑦 ) ) |
101 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( i · 𝑥 ) = ( i · 𝑦 ) ) |
102 |
101
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( exp ‘ ( i · 𝑥 ) ) = ( exp ‘ ( i · 𝑦 ) ) ) |
103 |
102
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( exp ‘ ( i · 𝑥 ) ) · i ) = ( ( exp ‘ ( i · 𝑦 ) ) · i ) ) |
104 |
103 95 94
|
fvmpt3i |
⊢ ( 𝑦 ∈ ( 0 (,) ( π / 3 ) ) → ( ( 𝑥 ∈ ( 0 (,) ( π / 3 ) ) ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ) ‘ 𝑦 ) = ( ( exp ‘ ( i · 𝑦 ) ) · i ) ) |
105 |
100 104
|
sylan9eq |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( ( ℝ D ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) ‘ 𝑦 ) = ( ( exp ‘ ( i · 𝑦 ) ) · i ) ) |
106 |
105
|
fveq2d |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( abs ‘ ( ( ℝ D ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) ‘ 𝑦 ) ) = ( abs ‘ ( ( exp ‘ ( i · 𝑦 ) ) · i ) ) ) |
107 |
|
ioossre |
⊢ ( 0 (,) ( π / 3 ) ) ⊆ ℝ |
108 |
107
|
a1i |
⊢ ( ⊤ → ( 0 (,) ( π / 3 ) ) ⊆ ℝ ) |
109 |
108
|
sselda |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → 𝑦 ∈ ℝ ) |
110 |
109
|
recnd |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → 𝑦 ∈ ℂ ) |
111 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( i · 𝑦 ) ∈ ℂ ) |
112 |
34 110 111
|
sylancr |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( i · 𝑦 ) ∈ ℂ ) |
113 |
|
efcl |
⊢ ( ( i · 𝑦 ) ∈ ℂ → ( exp ‘ ( i · 𝑦 ) ) ∈ ℂ ) |
114 |
112 113
|
syl |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( exp ‘ ( i · 𝑦 ) ) ∈ ℂ ) |
115 |
|
absmul |
⊢ ( ( ( exp ‘ ( i · 𝑦 ) ) ∈ ℂ ∧ i ∈ ℂ ) → ( abs ‘ ( ( exp ‘ ( i · 𝑦 ) ) · i ) ) = ( ( abs ‘ ( exp ‘ ( i · 𝑦 ) ) ) · ( abs ‘ i ) ) ) |
116 |
114 34 115
|
sylancl |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( abs ‘ ( ( exp ‘ ( i · 𝑦 ) ) · i ) ) = ( ( abs ‘ ( exp ‘ ( i · 𝑦 ) ) ) · ( abs ‘ i ) ) ) |
117 |
|
absefi |
⊢ ( 𝑦 ∈ ℝ → ( abs ‘ ( exp ‘ ( i · 𝑦 ) ) ) = 1 ) |
118 |
109 117
|
syl |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( abs ‘ ( exp ‘ ( i · 𝑦 ) ) ) = 1 ) |
119 |
|
absi |
⊢ ( abs ‘ i ) = 1 |
120 |
119
|
a1i |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( abs ‘ i ) = 1 ) |
121 |
118 120
|
oveq12d |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( ( abs ‘ ( exp ‘ ( i · 𝑦 ) ) ) · ( abs ‘ i ) ) = ( 1 · 1 ) ) |
122 |
41
|
mulid1i |
⊢ ( 1 · 1 ) = 1 |
123 |
121 122
|
eqtrdi |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( ( abs ‘ ( exp ‘ ( i · 𝑦 ) ) ) · ( abs ‘ i ) ) = 1 ) |
124 |
106 116 123
|
3eqtrd |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( abs ‘ ( ( ℝ D ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) ‘ 𝑦 ) ) = 1 ) |
125 |
|
1le1 |
⊢ 1 ≤ 1 |
126 |
124 125
|
eqbrtrdi |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( abs ‘ ( ( ℝ D ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) ‘ 𝑦 ) ) ≤ 1 ) |
127 |
19 24 59 97 99 126
|
dvlip |
⊢ ( ( ⊤ ∧ ( 0 ∈ ( 0 [,] ( π / 3 ) ) ∧ ( π / 3 ) ∈ ( 0 [,] ( π / 3 ) ) ) ) → ( abs ‘ ( ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ 0 ) − ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ ( π / 3 ) ) ) ) ≤ ( 1 · ( abs ‘ ( 0 − ( π / 3 ) ) ) ) ) |
128 |
3 17 127
|
mp2an |
⊢ ( abs ‘ ( ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ 0 ) − ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ ( π / 3 ) ) ) ) ≤ ( 1 · ( abs ‘ ( 0 − ( π / 3 ) ) ) ) |
129 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( i · 𝑥 ) = ( i · 0 ) ) |
130 |
|
it0e0 |
⊢ ( i · 0 ) = 0 |
131 |
129 130
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( i · 𝑥 ) = 0 ) |
132 |
131
|
fveq2d |
⊢ ( 𝑥 = 0 → ( exp ‘ ( i · 𝑥 ) ) = ( exp ‘ 0 ) ) |
133 |
|
ef0 |
⊢ ( exp ‘ 0 ) = 1 |
134 |
132 133
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( exp ‘ ( i · 𝑥 ) ) = 1 ) |
135 |
|
eqid |
⊢ ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) = ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) |
136 |
|
fvex |
⊢ ( exp ‘ ( i · 𝑥 ) ) ∈ V |
137 |
134 135 136
|
fvmpt3i |
⊢ ( 0 ∈ ( 0 [,] ( π / 3 ) ) → ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ 0 ) = 1 ) |
138 |
14 137
|
ax-mp |
⊢ ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ 0 ) = 1 |
139 |
|
oveq2 |
⊢ ( 𝑥 = ( π / 3 ) → ( i · 𝑥 ) = ( i · ( π / 3 ) ) ) |
140 |
139
|
fveq2d |
⊢ ( 𝑥 = ( π / 3 ) → ( exp ‘ ( i · 𝑥 ) ) = ( exp ‘ ( i · ( π / 3 ) ) ) ) |
141 |
140 135 136
|
fvmpt3i |
⊢ ( ( π / 3 ) ∈ ( 0 [,] ( π / 3 ) ) → ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ ( π / 3 ) ) = ( exp ‘ ( i · ( π / 3 ) ) ) ) |
142 |
16 141
|
ax-mp |
⊢ ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ ( π / 3 ) ) = ( exp ‘ ( i · ( π / 3 ) ) ) |
143 |
138 142
|
oveq12i |
⊢ ( ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ 0 ) − ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ ( π / 3 ) ) ) = ( 1 − ( exp ‘ ( i · ( π / 3 ) ) ) ) |
144 |
23
|
recni |
⊢ ( π / 3 ) ∈ ℂ |
145 |
34 144
|
mulcli |
⊢ ( i · ( π / 3 ) ) ∈ ℂ |
146 |
|
efcl |
⊢ ( ( i · ( π / 3 ) ) ∈ ℂ → ( exp ‘ ( i · ( π / 3 ) ) ) ∈ ℂ ) |
147 |
145 146
|
ax-mp |
⊢ ( exp ‘ ( i · ( π / 3 ) ) ) ∈ ℂ |
148 |
|
negicn |
⊢ - i ∈ ℂ |
149 |
148 144
|
mulcli |
⊢ ( - i · ( π / 3 ) ) ∈ ℂ |
150 |
|
efcl |
⊢ ( ( - i · ( π / 3 ) ) ∈ ℂ → ( exp ‘ ( - i · ( π / 3 ) ) ) ∈ ℂ ) |
151 |
149 150
|
ax-mp |
⊢ ( exp ‘ ( - i · ( π / 3 ) ) ) ∈ ℂ |
152 |
|
cosval |
⊢ ( ( π / 3 ) ∈ ℂ → ( cos ‘ ( π / 3 ) ) = ( ( ( exp ‘ ( i · ( π / 3 ) ) ) + ( exp ‘ ( - i · ( π / 3 ) ) ) ) / 2 ) ) |
153 |
144 152
|
ax-mp |
⊢ ( cos ‘ ( π / 3 ) ) = ( ( ( exp ‘ ( i · ( π / 3 ) ) ) + ( exp ‘ ( - i · ( π / 3 ) ) ) ) / 2 ) |
154 |
|
sincos3rdpi |
⊢ ( ( sin ‘ ( π / 3 ) ) = ( ( √ ‘ 3 ) / 2 ) ∧ ( cos ‘ ( π / 3 ) ) = ( 1 / 2 ) ) |
155 |
154
|
simpri |
⊢ ( cos ‘ ( π / 3 ) ) = ( 1 / 2 ) |
156 |
153 155
|
eqtr3i |
⊢ ( ( ( exp ‘ ( i · ( π / 3 ) ) ) + ( exp ‘ ( - i · ( π / 3 ) ) ) ) / 2 ) = ( 1 / 2 ) |
157 |
147 151
|
addcli |
⊢ ( ( exp ‘ ( i · ( π / 3 ) ) ) + ( exp ‘ ( - i · ( π / 3 ) ) ) ) ∈ ℂ |
158 |
|
2cn |
⊢ 2 ∈ ℂ |
159 |
|
2ne0 |
⊢ 2 ≠ 0 |
160 |
157 41 158 159
|
div11i |
⊢ ( ( ( ( exp ‘ ( i · ( π / 3 ) ) ) + ( exp ‘ ( - i · ( π / 3 ) ) ) ) / 2 ) = ( 1 / 2 ) ↔ ( ( exp ‘ ( i · ( π / 3 ) ) ) + ( exp ‘ ( - i · ( π / 3 ) ) ) ) = 1 ) |
161 |
156 160
|
mpbi |
⊢ ( ( exp ‘ ( i · ( π / 3 ) ) ) + ( exp ‘ ( - i · ( π / 3 ) ) ) ) = 1 |
162 |
41 147 151 161
|
subaddrii |
⊢ ( 1 − ( exp ‘ ( i · ( π / 3 ) ) ) ) = ( exp ‘ ( - i · ( π / 3 ) ) ) |
163 |
|
mulneg12 |
⊢ ( ( i ∈ ℂ ∧ ( π / 3 ) ∈ ℂ ) → ( - i · ( π / 3 ) ) = ( i · - ( π / 3 ) ) ) |
164 |
34 144 163
|
mp2an |
⊢ ( - i · ( π / 3 ) ) = ( i · - ( π / 3 ) ) |
165 |
164
|
fveq2i |
⊢ ( exp ‘ ( - i · ( π / 3 ) ) ) = ( exp ‘ ( i · - ( π / 3 ) ) ) |
166 |
143 162 165
|
3eqtri |
⊢ ( ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ 0 ) − ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ ( π / 3 ) ) ) = ( exp ‘ ( i · - ( π / 3 ) ) ) |
167 |
166
|
fveq2i |
⊢ ( abs ‘ ( ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ 0 ) − ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ ( π / 3 ) ) ) ) = ( abs ‘ ( exp ‘ ( i · - ( π / 3 ) ) ) ) |
168 |
144
|
absnegi |
⊢ ( abs ‘ - ( π / 3 ) ) = ( abs ‘ ( π / 3 ) ) |
169 |
|
df-neg |
⊢ - ( π / 3 ) = ( 0 − ( π / 3 ) ) |
170 |
169
|
fveq2i |
⊢ ( abs ‘ - ( π / 3 ) ) = ( abs ‘ ( 0 − ( π / 3 ) ) ) |
171 |
168 170
|
eqtr3i |
⊢ ( abs ‘ ( π / 3 ) ) = ( abs ‘ ( 0 − ( π / 3 ) ) ) |
172 |
|
rprege0 |
⊢ ( ( π / 3 ) ∈ ℝ+ → ( ( π / 3 ) ∈ ℝ ∧ 0 ≤ ( π / 3 ) ) ) |
173 |
|
absid |
⊢ ( ( ( π / 3 ) ∈ ℝ ∧ 0 ≤ ( π / 3 ) ) → ( abs ‘ ( π / 3 ) ) = ( π / 3 ) ) |
174 |
8 172 173
|
mp2b |
⊢ ( abs ‘ ( π / 3 ) ) = ( π / 3 ) |
175 |
171 174
|
eqtr3i |
⊢ ( abs ‘ ( 0 − ( π / 3 ) ) ) = ( π / 3 ) |
176 |
175
|
oveq2i |
⊢ ( 1 · ( abs ‘ ( 0 − ( π / 3 ) ) ) ) = ( 1 · ( π / 3 ) ) |
177 |
128 167 176
|
3brtr3i |
⊢ ( abs ‘ ( exp ‘ ( i · - ( π / 3 ) ) ) ) ≤ ( 1 · ( π / 3 ) ) |
178 |
23
|
renegcli |
⊢ - ( π / 3 ) ∈ ℝ |
179 |
|
absefi |
⊢ ( - ( π / 3 ) ∈ ℝ → ( abs ‘ ( exp ‘ ( i · - ( π / 3 ) ) ) ) = 1 ) |
180 |
178 179
|
ax-mp |
⊢ ( abs ‘ ( exp ‘ ( i · - ( π / 3 ) ) ) ) = 1 |
181 |
144
|
mulid2i |
⊢ ( 1 · ( π / 3 ) ) = ( π / 3 ) |
182 |
177 180 181
|
3brtr3i |
⊢ 1 ≤ ( π / 3 ) |
183 |
|
3pos |
⊢ 0 < 3 |
184 |
21 183
|
pm3.2i |
⊢ ( 3 ∈ ℝ ∧ 0 < 3 ) |
185 |
|
lemuldiv |
⊢ ( ( 1 ∈ ℝ ∧ π ∈ ℝ ∧ ( 3 ∈ ℝ ∧ 0 < 3 ) ) → ( ( 1 · 3 ) ≤ π ↔ 1 ≤ ( π / 3 ) ) ) |
186 |
98 20 184 185
|
mp3an |
⊢ ( ( 1 · 3 ) ≤ π ↔ 1 ≤ ( π / 3 ) ) |
187 |
182 186
|
mpbir |
⊢ ( 1 · 3 ) ≤ π |
188 |
2 187
|
eqbrtrri |
⊢ 3 ≤ π |