Metamath Proof Explorer


Theorem pigt3

Description: _pi is greater than 3. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Assertion pigt3 3 < π

Proof

Step Hyp Ref Expression
1 sincos6thpi ( ( sin ‘ ( π / 6 ) ) = ( 1 / 2 ) ∧ ( cos ‘ ( π / 6 ) ) = ( ( √ ‘ 3 ) / 2 ) )
2 1 simpli ( sin ‘ ( π / 6 ) ) = ( 1 / 2 )
3 ax-1cn 1 ∈ ℂ
4 2cnne0 ( 2 ∈ ℂ ∧ 2 ≠ 0 )
5 3cn 3 ∈ ℂ
6 3ne0 3 ≠ 0
7 5 6 pm3.2i ( 3 ∈ ℂ ∧ 3 ≠ 0 )
8 divcan5 ( ( 1 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( ( 3 · 1 ) / ( 3 · 2 ) ) = ( 1 / 2 ) )
9 3 4 7 8 mp3an ( ( 3 · 1 ) / ( 3 · 2 ) ) = ( 1 / 2 )
10 3t1e3 ( 3 · 1 ) = 3
11 3t2e6 ( 3 · 2 ) = 6
12 10 11 oveq12i ( ( 3 · 1 ) / ( 3 · 2 ) ) = ( 3 / 6 )
13 2 9 12 3eqtr2i ( sin ‘ ( π / 6 ) ) = ( 3 / 6 )
14 pire π ∈ ℝ
15 pipos 0 < π
16 14 15 elrpii π ∈ ℝ+
17 6re 6 ∈ ℝ
18 6pos 0 < 6
19 17 18 elrpii 6 ∈ ℝ+
20 rpdivcl ( ( π ∈ ℝ+ ∧ 6 ∈ ℝ+ ) → ( π / 6 ) ∈ ℝ+ )
21 16 19 20 mp2an ( π / 6 ) ∈ ℝ+
22 sinltx ( ( π / 6 ) ∈ ℝ+ → ( sin ‘ ( π / 6 ) ) < ( π / 6 ) )
23 21 22 ax-mp ( sin ‘ ( π / 6 ) ) < ( π / 6 )
24 13 23 eqbrtrri ( 3 / 6 ) < ( π / 6 )
25 3re 3 ∈ ℝ
26 25 14 17 18 ltdiv1ii ( 3 < π ↔ ( 3 / 6 ) < ( π / 6 ) )
27 24 26 mpbir 3 < π