| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sincos6thpi | 
							⊢ ( ( sin ‘ ( π  /  6 ) )  =  ( 1  /  2 )  ∧  ( cos ‘ ( π  /  6 ) )  =  ( ( √ ‘ 3 )  /  2 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							simpli | 
							⊢ ( sin ‘ ( π  /  6 ) )  =  ( 1  /  2 )  | 
						
						
							| 3 | 
							
								
							 | 
							ax-1cn | 
							⊢ 1  ∈  ℂ  | 
						
						
							| 4 | 
							
								
							 | 
							2cnne0 | 
							⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 )  | 
						
						
							| 5 | 
							
								
							 | 
							3cn | 
							⊢ 3  ∈  ℂ  | 
						
						
							| 6 | 
							
								
							 | 
							3ne0 | 
							⊢ 3  ≠  0  | 
						
						
							| 7 | 
							
								5 6
							 | 
							pm3.2i | 
							⊢ ( 3  ∈  ℂ  ∧  3  ≠  0 )  | 
						
						
							| 8 | 
							
								
							 | 
							divcan5 | 
							⊢ ( ( 1  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 )  ∧  ( 3  ∈  ℂ  ∧  3  ≠  0 ) )  →  ( ( 3  ·  1 )  /  ( 3  ·  2 ) )  =  ( 1  /  2 ) )  | 
						
						
							| 9 | 
							
								3 4 7 8
							 | 
							mp3an | 
							⊢ ( ( 3  ·  1 )  /  ( 3  ·  2 ) )  =  ( 1  /  2 )  | 
						
						
							| 10 | 
							
								
							 | 
							3t1e3 | 
							⊢ ( 3  ·  1 )  =  3  | 
						
						
							| 11 | 
							
								
							 | 
							3t2e6 | 
							⊢ ( 3  ·  2 )  =  6  | 
						
						
							| 12 | 
							
								10 11
							 | 
							oveq12i | 
							⊢ ( ( 3  ·  1 )  /  ( 3  ·  2 ) )  =  ( 3  /  6 )  | 
						
						
							| 13 | 
							
								2 9 12
							 | 
							3eqtr2i | 
							⊢ ( sin ‘ ( π  /  6 ) )  =  ( 3  /  6 )  | 
						
						
							| 14 | 
							
								
							 | 
							pire | 
							⊢ π  ∈  ℝ  | 
						
						
							| 15 | 
							
								
							 | 
							pipos | 
							⊢ 0  <  π  | 
						
						
							| 16 | 
							
								14 15
							 | 
							elrpii | 
							⊢ π  ∈  ℝ+  | 
						
						
							| 17 | 
							
								
							 | 
							6re | 
							⊢ 6  ∈  ℝ  | 
						
						
							| 18 | 
							
								
							 | 
							6pos | 
							⊢ 0  <  6  | 
						
						
							| 19 | 
							
								17 18
							 | 
							elrpii | 
							⊢ 6  ∈  ℝ+  | 
						
						
							| 20 | 
							
								
							 | 
							rpdivcl | 
							⊢ ( ( π  ∈  ℝ+  ∧  6  ∈  ℝ+ )  →  ( π  /  6 )  ∈  ℝ+ )  | 
						
						
							| 21 | 
							
								16 19 20
							 | 
							mp2an | 
							⊢ ( π  /  6 )  ∈  ℝ+  | 
						
						
							| 22 | 
							
								
							 | 
							sinltx | 
							⊢ ( ( π  /  6 )  ∈  ℝ+  →  ( sin ‘ ( π  /  6 ) )  <  ( π  /  6 ) )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							ax-mp | 
							⊢ ( sin ‘ ( π  /  6 ) )  <  ( π  /  6 )  | 
						
						
							| 24 | 
							
								13 23
							 | 
							eqbrtrri | 
							⊢ ( 3  /  6 )  <  ( π  /  6 )  | 
						
						
							| 25 | 
							
								
							 | 
							3re | 
							⊢ 3  ∈  ℝ  | 
						
						
							| 26 | 
							
								25 14 17 18
							 | 
							ltdiv1ii | 
							⊢ ( 3  <  π  ↔  ( 3  /  6 )  <  ( π  /  6 ) )  | 
						
						
							| 27 | 
							
								24 26
							 | 
							mpbir | 
							⊢ 3  <  π  |