Step |
Hyp |
Ref |
Expression |
1 |
|
sincos6thpi |
⊢ ( ( sin ‘ ( π / 6 ) ) = ( 1 / 2 ) ∧ ( cos ‘ ( π / 6 ) ) = ( ( √ ‘ 3 ) / 2 ) ) |
2 |
1
|
simpli |
⊢ ( sin ‘ ( π / 6 ) ) = ( 1 / 2 ) |
3 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
4 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
5 |
|
3cn |
⊢ 3 ∈ ℂ |
6 |
|
3ne0 |
⊢ 3 ≠ 0 |
7 |
5 6
|
pm3.2i |
⊢ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) |
8 |
|
divcan5 |
⊢ ( ( 1 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( ( 3 · 1 ) / ( 3 · 2 ) ) = ( 1 / 2 ) ) |
9 |
3 4 7 8
|
mp3an |
⊢ ( ( 3 · 1 ) / ( 3 · 2 ) ) = ( 1 / 2 ) |
10 |
|
3t1e3 |
⊢ ( 3 · 1 ) = 3 |
11 |
|
3t2e6 |
⊢ ( 3 · 2 ) = 6 |
12 |
10 11
|
oveq12i |
⊢ ( ( 3 · 1 ) / ( 3 · 2 ) ) = ( 3 / 6 ) |
13 |
2 9 12
|
3eqtr2i |
⊢ ( sin ‘ ( π / 6 ) ) = ( 3 / 6 ) |
14 |
|
pire |
⊢ π ∈ ℝ |
15 |
|
pipos |
⊢ 0 < π |
16 |
14 15
|
elrpii |
⊢ π ∈ ℝ+ |
17 |
|
6re |
⊢ 6 ∈ ℝ |
18 |
|
6pos |
⊢ 0 < 6 |
19 |
17 18
|
elrpii |
⊢ 6 ∈ ℝ+ |
20 |
|
rpdivcl |
⊢ ( ( π ∈ ℝ+ ∧ 6 ∈ ℝ+ ) → ( π / 6 ) ∈ ℝ+ ) |
21 |
16 19 20
|
mp2an |
⊢ ( π / 6 ) ∈ ℝ+ |
22 |
|
sinltx |
⊢ ( ( π / 6 ) ∈ ℝ+ → ( sin ‘ ( π / 6 ) ) < ( π / 6 ) ) |
23 |
21 22
|
ax-mp |
⊢ ( sin ‘ ( π / 6 ) ) < ( π / 6 ) |
24 |
13 23
|
eqbrtrri |
⊢ ( 3 / 6 ) < ( π / 6 ) |
25 |
|
3re |
⊢ 3 ∈ ℝ |
26 |
25 14 17 18
|
ltdiv1ii |
⊢ ( 3 < π ↔ ( 3 / 6 ) < ( π / 6 ) ) |
27 |
24 26
|
mpbir |
⊢ 3 < π |