Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
⊢ ( 𝐴 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ↔ ( 𝐴 ∈ ℝ+ ∧ 𝐴 ∈ ( ◡ sin “ { 0 } ) ) ) |
2 |
|
sinf |
⊢ sin : ℂ ⟶ ℂ |
3 |
|
ffn |
⊢ ( sin : ℂ ⟶ ℂ → sin Fn ℂ ) |
4 |
|
fniniseg |
⊢ ( sin Fn ℂ → ( 𝐴 ∈ ( ◡ sin “ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) ) ) |
5 |
2 3 4
|
mp2b |
⊢ ( 𝐴 ∈ ( ◡ sin “ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) ) |
6 |
|
rpcn |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) |
7 |
6
|
biantrurd |
⊢ ( 𝐴 ∈ ℝ+ → ( ( sin ‘ 𝐴 ) = 0 ↔ ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) ) ) |
8 |
5 7
|
bitr4id |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ( ◡ sin “ { 0 } ) ↔ ( sin ‘ 𝐴 ) = 0 ) ) |
9 |
8
|
pm5.32i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ∈ ( ◡ sin “ { 0 } ) ) ↔ ( 𝐴 ∈ ℝ+ ∧ ( sin ‘ 𝐴 ) = 0 ) ) |
10 |
1 9
|
bitri |
⊢ ( 𝐴 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ↔ ( 𝐴 ∈ ℝ+ ∧ ( sin ‘ 𝐴 ) = 0 ) ) |