| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pilem2.1 | ⊢ ( 𝜑  →  𝐴  ∈  ( 2 (,) 4 ) ) | 
						
							| 2 |  | pilem2.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ+ ) | 
						
							| 3 |  | pilem2.3 | ⊢ ( 𝜑  →  ( sin ‘ 𝐴 )  =  0 ) | 
						
							| 4 |  | pilem2.4 | ⊢ ( 𝜑  →  ( sin ‘ 𝐵 )  =  0 ) | 
						
							| 5 |  | df-pi | ⊢ π  =  inf ( ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) ,  ℝ ,   <  ) | 
						
							| 6 |  | inss1 | ⊢ ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) )  ⊆  ℝ+ | 
						
							| 7 |  | rpssre | ⊢ ℝ+  ⊆  ℝ | 
						
							| 8 | 6 7 | sstri | ⊢ ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) )  ⊆  ℝ | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) )  ⊆  ℝ ) | 
						
							| 10 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 11 |  | elinel1 | ⊢ ( 𝑦  ∈  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) )  →  𝑦  ∈  ℝ+ ) | 
						
							| 12 | 11 | rpge0d | ⊢ ( 𝑦  ∈  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) )  →  0  ≤  𝑦 ) | 
						
							| 13 | 12 | rgen | ⊢ ∀ 𝑦  ∈  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) 0  ≤  𝑦 | 
						
							| 14 |  | breq1 | ⊢ ( 𝑥  =  0  →  ( 𝑥  ≤  𝑦  ↔  0  ≤  𝑦 ) ) | 
						
							| 15 | 14 | ralbidv | ⊢ ( 𝑥  =  0  →  ( ∀ 𝑦  ∈  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) 𝑥  ≤  𝑦  ↔  ∀ 𝑦  ∈  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) 0  ≤  𝑦 ) ) | 
						
							| 16 | 15 | rspcev | ⊢ ( ( 0  ∈  ℝ  ∧  ∀ 𝑦  ∈  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) 0  ≤  𝑦 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) 𝑥  ≤  𝑦 ) | 
						
							| 17 | 10 13 16 | mp2an | ⊢ ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) 𝑥  ≤  𝑦 | 
						
							| 18 | 17 | a1i | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) 𝑥  ≤  𝑦 ) | 
						
							| 19 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 20 | 2 | rpred | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 21 |  | remulcl | ⊢ ( ( 2  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 2  ·  𝐵 )  ∈  ℝ ) | 
						
							| 22 | 19 20 21 | sylancr | ⊢ ( 𝜑  →  ( 2  ·  𝐵 )  ∈  ℝ ) | 
						
							| 23 |  | elioore | ⊢ ( 𝐴  ∈  ( 2 (,) 4 )  →  𝐴  ∈  ℝ ) | 
						
							| 24 | 1 23 | syl | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 25 | 22 24 | resubcld | ⊢ ( 𝜑  →  ( ( 2  ·  𝐵 )  −  𝐴 )  ∈  ℝ ) | 
						
							| 26 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 27 | 26 | a1i | ⊢ ( 𝜑  →  4  ∈  ℝ ) | 
						
							| 28 |  | eliooord | ⊢ ( 𝐴  ∈  ( 2 (,) 4 )  →  ( 2  <  𝐴  ∧  𝐴  <  4 ) ) | 
						
							| 29 | 1 28 | syl | ⊢ ( 𝜑  →  ( 2  <  𝐴  ∧  𝐴  <  4 ) ) | 
						
							| 30 | 29 | simprd | ⊢ ( 𝜑  →  𝐴  <  4 ) | 
						
							| 31 |  | 2t2e4 | ⊢ ( 2  ·  2 )  =  4 | 
						
							| 32 | 19 | a1i | ⊢ ( 𝜑  →  2  ∈  ℝ ) | 
						
							| 33 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 34 |  | 2pos | ⊢ 0  <  2 | 
						
							| 35 | 34 | a1i | ⊢ ( 𝜑  →  0  <  2 ) | 
						
							| 36 | 29 | simpld | ⊢ ( 𝜑  →  2  <  𝐴 ) | 
						
							| 37 | 33 32 24 35 36 | lttrd | ⊢ ( 𝜑  →  0  <  𝐴 ) | 
						
							| 38 | 24 37 | elrpd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
						
							| 39 |  | pilem1 | ⊢ ( 𝐴  ∈  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) )  ↔  ( 𝐴  ∈  ℝ+  ∧  ( sin ‘ 𝐴 )  =  0 ) ) | 
						
							| 40 | 38 3 39 | sylanbrc | ⊢ ( 𝜑  →  𝐴  ∈  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) ) | 
						
							| 41 | 40 | ne0d | ⊢ ( 𝜑  →  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) )  ≠  ∅ ) | 
						
							| 42 |  | infrecl | ⊢ ( ( ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) )  ⊆  ℝ  ∧  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) )  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) 𝑥  ≤  𝑦 )  →  inf ( ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 43 | 8 17 42 | mp3an13 | ⊢ ( ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) )  ≠  ∅  →  inf ( ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 44 | 41 43 | syl | ⊢ ( 𝜑  →  inf ( ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 45 |  | pilem1 | ⊢ ( 𝑥  ∈  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) )  ↔  ( 𝑥  ∈  ℝ+  ∧  ( sin ‘ 𝑥 )  =  0 ) ) | 
						
							| 46 |  | rpre | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℝ ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℝ ) | 
						
							| 48 |  | letric | ⊢ ( ( 2  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( 2  ≤  𝑥  ∨  𝑥  ≤  2 ) ) | 
						
							| 49 | 19 47 48 | sylancr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 2  ≤  𝑥  ∨  𝑥  ≤  2 ) ) | 
						
							| 50 | 49 | ord | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ¬  2  ≤  𝑥  →  𝑥  ≤  2 ) ) | 
						
							| 51 | 46 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑥  ≤  2 )  →  𝑥  ∈  ℝ ) | 
						
							| 52 |  | rpgt0 | ⊢ ( 𝑥  ∈  ℝ+  →  0  <  𝑥 ) | 
						
							| 53 | 52 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑥  ≤  2 )  →  0  <  𝑥 ) | 
						
							| 54 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑥  ≤  2 )  →  𝑥  ≤  2 ) | 
						
							| 55 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 56 |  | elioc2 | ⊢ ( ( 0  ∈  ℝ*  ∧  2  ∈  ℝ )  →  ( 𝑥  ∈  ( 0 (,] 2 )  ↔  ( 𝑥  ∈  ℝ  ∧  0  <  𝑥  ∧  𝑥  ≤  2 ) ) ) | 
						
							| 57 | 55 19 56 | mp2an | ⊢ ( 𝑥  ∈  ( 0 (,] 2 )  ↔  ( 𝑥  ∈  ℝ  ∧  0  <  𝑥  ∧  𝑥  ≤  2 ) ) | 
						
							| 58 | 51 53 54 57 | syl3anbrc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑥  ≤  2 )  →  𝑥  ∈  ( 0 (,] 2 ) ) | 
						
							| 59 |  | sin02gt0 | ⊢ ( 𝑥  ∈  ( 0 (,] 2 )  →  0  <  ( sin ‘ 𝑥 ) ) | 
						
							| 60 | 58 59 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑥  ≤  2 )  →  0  <  ( sin ‘ 𝑥 ) ) | 
						
							| 61 | 60 | gt0ne0d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑥  ≤  2 )  →  ( sin ‘ 𝑥 )  ≠  0 ) | 
						
							| 62 | 61 | ex | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 𝑥  ≤  2  →  ( sin ‘ 𝑥 )  ≠  0 ) ) | 
						
							| 63 | 50 62 | syld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ¬  2  ≤  𝑥  →  ( sin ‘ 𝑥 )  ≠  0 ) ) | 
						
							| 64 | 63 | necon4bd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ( sin ‘ 𝑥 )  =  0  →  2  ≤  𝑥 ) ) | 
						
							| 65 | 64 | expimpd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ+  ∧  ( sin ‘ 𝑥 )  =  0 )  →  2  ≤  𝑥 ) ) | 
						
							| 66 | 45 65 | biimtrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) )  →  2  ≤  𝑥 ) ) | 
						
							| 67 | 66 | ralrimiv | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) 2  ≤  𝑥 ) | 
						
							| 68 |  | infregelb | ⊢ ( ( ( ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) )  ⊆  ℝ  ∧  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) )  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) 𝑥  ≤  𝑦 )  ∧  2  ∈  ℝ )  →  ( 2  ≤  inf ( ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) ,  ℝ ,   <  )  ↔  ∀ 𝑥  ∈  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) 2  ≤  𝑥 ) ) | 
						
							| 69 | 9 41 18 32 68 | syl31anc | ⊢ ( 𝜑  →  ( 2  ≤  inf ( ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) ,  ℝ ,   <  )  ↔  ∀ 𝑥  ∈  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) 2  ≤  𝑥 ) ) | 
						
							| 70 | 67 69 | mpbird | ⊢ ( 𝜑  →  2  ≤  inf ( ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) ,  ℝ ,   <  ) ) | 
						
							| 71 |  | pilem1 | ⊢ ( 𝐵  ∈  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) )  ↔  ( 𝐵  ∈  ℝ+  ∧  ( sin ‘ 𝐵 )  =  0 ) ) | 
						
							| 72 | 2 4 71 | sylanbrc | ⊢ ( 𝜑  →  𝐵  ∈  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) ) | 
						
							| 73 |  | infrelb | ⊢ ( ( ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) )  ⊆  ℝ  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) 𝑥  ≤  𝑦  ∧  𝐵  ∈  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) )  →  inf ( ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) ,  ℝ ,   <  )  ≤  𝐵 ) | 
						
							| 74 | 9 18 72 73 | syl3anc | ⊢ ( 𝜑  →  inf ( ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) ,  ℝ ,   <  )  ≤  𝐵 ) | 
						
							| 75 | 32 44 20 70 74 | letrd | ⊢ ( 𝜑  →  2  ≤  𝐵 ) | 
						
							| 76 | 19 34 | pm3.2i | ⊢ ( 2  ∈  ℝ  ∧  0  <  2 ) | 
						
							| 77 | 76 | a1i | ⊢ ( 𝜑  →  ( 2  ∈  ℝ  ∧  0  <  2 ) ) | 
						
							| 78 |  | lemul2 | ⊢ ( ( 2  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( 2  ≤  𝐵  ↔  ( 2  ·  2 )  ≤  ( 2  ·  𝐵 ) ) ) | 
						
							| 79 | 32 20 77 78 | syl3anc | ⊢ ( 𝜑  →  ( 2  ≤  𝐵  ↔  ( 2  ·  2 )  ≤  ( 2  ·  𝐵 ) ) ) | 
						
							| 80 | 75 79 | mpbid | ⊢ ( 𝜑  →  ( 2  ·  2 )  ≤  ( 2  ·  𝐵 ) ) | 
						
							| 81 | 31 80 | eqbrtrrid | ⊢ ( 𝜑  →  4  ≤  ( 2  ·  𝐵 ) ) | 
						
							| 82 | 24 27 22 30 81 | ltletrd | ⊢ ( 𝜑  →  𝐴  <  ( 2  ·  𝐵 ) ) | 
						
							| 83 | 24 22 | posdifd | ⊢ ( 𝜑  →  ( 𝐴  <  ( 2  ·  𝐵 )  ↔  0  <  ( ( 2  ·  𝐵 )  −  𝐴 ) ) ) | 
						
							| 84 | 82 83 | mpbid | ⊢ ( 𝜑  →  0  <  ( ( 2  ·  𝐵 )  −  𝐴 ) ) | 
						
							| 85 | 25 84 | elrpd | ⊢ ( 𝜑  →  ( ( 2  ·  𝐵 )  −  𝐴 )  ∈  ℝ+ ) | 
						
							| 86 | 22 | recnd | ⊢ ( 𝜑  →  ( 2  ·  𝐵 )  ∈  ℂ ) | 
						
							| 87 | 24 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 88 |  | sinsub | ⊢ ( ( ( 2  ·  𝐵 )  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( sin ‘ ( ( 2  ·  𝐵 )  −  𝐴 ) )  =  ( ( ( sin ‘ ( 2  ·  𝐵 ) )  ·  ( cos ‘ 𝐴 ) )  −  ( ( cos ‘ ( 2  ·  𝐵 ) )  ·  ( sin ‘ 𝐴 ) ) ) ) | 
						
							| 89 | 86 87 88 | syl2anc | ⊢ ( 𝜑  →  ( sin ‘ ( ( 2  ·  𝐵 )  −  𝐴 ) )  =  ( ( ( sin ‘ ( 2  ·  𝐵 ) )  ·  ( cos ‘ 𝐴 ) )  −  ( ( cos ‘ ( 2  ·  𝐵 ) )  ·  ( sin ‘ 𝐴 ) ) ) ) | 
						
							| 90 | 20 | recnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 91 |  | sin2t | ⊢ ( 𝐵  ∈  ℂ  →  ( sin ‘ ( 2  ·  𝐵 ) )  =  ( 2  ·  ( ( sin ‘ 𝐵 )  ·  ( cos ‘ 𝐵 ) ) ) ) | 
						
							| 92 | 90 91 | syl | ⊢ ( 𝜑  →  ( sin ‘ ( 2  ·  𝐵 ) )  =  ( 2  ·  ( ( sin ‘ 𝐵 )  ·  ( cos ‘ 𝐵 ) ) ) ) | 
						
							| 93 | 4 | oveq1d | ⊢ ( 𝜑  →  ( ( sin ‘ 𝐵 )  ·  ( cos ‘ 𝐵 ) )  =  ( 0  ·  ( cos ‘ 𝐵 ) ) ) | 
						
							| 94 | 90 | coscld | ⊢ ( 𝜑  →  ( cos ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 95 | 94 | mul02d | ⊢ ( 𝜑  →  ( 0  ·  ( cos ‘ 𝐵 ) )  =  0 ) | 
						
							| 96 | 93 95 | eqtrd | ⊢ ( 𝜑  →  ( ( sin ‘ 𝐵 )  ·  ( cos ‘ 𝐵 ) )  =  0 ) | 
						
							| 97 | 96 | oveq2d | ⊢ ( 𝜑  →  ( 2  ·  ( ( sin ‘ 𝐵 )  ·  ( cos ‘ 𝐵 ) ) )  =  ( 2  ·  0 ) ) | 
						
							| 98 |  | 2t0e0 | ⊢ ( 2  ·  0 )  =  0 | 
						
							| 99 | 97 98 | eqtrdi | ⊢ ( 𝜑  →  ( 2  ·  ( ( sin ‘ 𝐵 )  ·  ( cos ‘ 𝐵 ) ) )  =  0 ) | 
						
							| 100 | 92 99 | eqtrd | ⊢ ( 𝜑  →  ( sin ‘ ( 2  ·  𝐵 ) )  =  0 ) | 
						
							| 101 | 100 | oveq1d | ⊢ ( 𝜑  →  ( ( sin ‘ ( 2  ·  𝐵 ) )  ·  ( cos ‘ 𝐴 ) )  =  ( 0  ·  ( cos ‘ 𝐴 ) ) ) | 
						
							| 102 | 87 | coscld | ⊢ ( 𝜑  →  ( cos ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 103 | 102 | mul02d | ⊢ ( 𝜑  →  ( 0  ·  ( cos ‘ 𝐴 ) )  =  0 ) | 
						
							| 104 | 101 103 | eqtrd | ⊢ ( 𝜑  →  ( ( sin ‘ ( 2  ·  𝐵 ) )  ·  ( cos ‘ 𝐴 ) )  =  0 ) | 
						
							| 105 | 3 | oveq2d | ⊢ ( 𝜑  →  ( ( cos ‘ ( 2  ·  𝐵 ) )  ·  ( sin ‘ 𝐴 ) )  =  ( ( cos ‘ ( 2  ·  𝐵 ) )  ·  0 ) ) | 
						
							| 106 | 86 | coscld | ⊢ ( 𝜑  →  ( cos ‘ ( 2  ·  𝐵 ) )  ∈  ℂ ) | 
						
							| 107 | 106 | mul01d | ⊢ ( 𝜑  →  ( ( cos ‘ ( 2  ·  𝐵 ) )  ·  0 )  =  0 ) | 
						
							| 108 | 105 107 | eqtrd | ⊢ ( 𝜑  →  ( ( cos ‘ ( 2  ·  𝐵 ) )  ·  ( sin ‘ 𝐴 ) )  =  0 ) | 
						
							| 109 | 104 108 | oveq12d | ⊢ ( 𝜑  →  ( ( ( sin ‘ ( 2  ·  𝐵 ) )  ·  ( cos ‘ 𝐴 ) )  −  ( ( cos ‘ ( 2  ·  𝐵 ) )  ·  ( sin ‘ 𝐴 ) ) )  =  ( 0  −  0 ) ) | 
						
							| 110 |  | 0m0e0 | ⊢ ( 0  −  0 )  =  0 | 
						
							| 111 | 109 110 | eqtrdi | ⊢ ( 𝜑  →  ( ( ( sin ‘ ( 2  ·  𝐵 ) )  ·  ( cos ‘ 𝐴 ) )  −  ( ( cos ‘ ( 2  ·  𝐵 ) )  ·  ( sin ‘ 𝐴 ) ) )  =  0 ) | 
						
							| 112 | 89 111 | eqtrd | ⊢ ( 𝜑  →  ( sin ‘ ( ( 2  ·  𝐵 )  −  𝐴 ) )  =  0 ) | 
						
							| 113 |  | pilem1 | ⊢ ( ( ( 2  ·  𝐵 )  −  𝐴 )  ∈  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) )  ↔  ( ( ( 2  ·  𝐵 )  −  𝐴 )  ∈  ℝ+  ∧  ( sin ‘ ( ( 2  ·  𝐵 )  −  𝐴 ) )  =  0 ) ) | 
						
							| 114 | 85 112 113 | sylanbrc | ⊢ ( 𝜑  →  ( ( 2  ·  𝐵 )  −  𝐴 )  ∈  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) ) | 
						
							| 115 |  | infrelb | ⊢ ( ( ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) )  ⊆  ℝ  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) 𝑥  ≤  𝑦  ∧  ( ( 2  ·  𝐵 )  −  𝐴 )  ∈  ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) )  →  inf ( ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) ,  ℝ ,   <  )  ≤  ( ( 2  ·  𝐵 )  −  𝐴 ) ) | 
						
							| 116 | 9 18 114 115 | syl3anc | ⊢ ( 𝜑  →  inf ( ( ℝ+  ∩  ( ◡ sin  “  { 0 } ) ) ,  ℝ ,   <  )  ≤  ( ( 2  ·  𝐵 )  −  𝐴 ) ) | 
						
							| 117 | 5 116 | eqbrtrid | ⊢ ( 𝜑  →  π  ≤  ( ( 2  ·  𝐵 )  −  𝐴 ) ) | 
						
							| 118 | 5 44 | eqeltrid | ⊢ ( 𝜑  →  π  ∈  ℝ ) | 
						
							| 119 |  | leaddsub | ⊢ ( ( π  ∈  ℝ  ∧  𝐴  ∈  ℝ  ∧  ( 2  ·  𝐵 )  ∈  ℝ )  →  ( ( π  +  𝐴 )  ≤  ( 2  ·  𝐵 )  ↔  π  ≤  ( ( 2  ·  𝐵 )  −  𝐴 ) ) ) | 
						
							| 120 | 118 24 22 119 | syl3anc | ⊢ ( 𝜑  →  ( ( π  +  𝐴 )  ≤  ( 2  ·  𝐵 )  ↔  π  ≤  ( ( 2  ·  𝐵 )  −  𝐴 ) ) ) | 
						
							| 121 | 117 120 | mpbird | ⊢ ( 𝜑  →  ( π  +  𝐴 )  ≤  ( 2  ·  𝐵 ) ) | 
						
							| 122 | 118 24 | readdcld | ⊢ ( 𝜑  →  ( π  +  𝐴 )  ∈  ℝ ) | 
						
							| 123 |  | ledivmul | ⊢ ( ( ( π  +  𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( ( π  +  𝐴 )  /  2 )  ≤  𝐵  ↔  ( π  +  𝐴 )  ≤  ( 2  ·  𝐵 ) ) ) | 
						
							| 124 | 122 20 77 123 | syl3anc | ⊢ ( 𝜑  →  ( ( ( π  +  𝐴 )  /  2 )  ≤  𝐵  ↔  ( π  +  𝐴 )  ≤  ( 2  ·  𝐵 ) ) ) | 
						
							| 125 | 121 124 | mpbird | ⊢ ( 𝜑  →  ( ( π  +  𝐴 )  /  2 )  ≤  𝐵 ) |