Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
⊢ 2 ∈ ℝ |
2 |
1
|
a1i |
⊢ ( ⊤ → 2 ∈ ℝ ) |
3 |
|
4re |
⊢ 4 ∈ ℝ |
4 |
3
|
a1i |
⊢ ( ⊤ → 4 ∈ ℝ ) |
5 |
|
0red |
⊢ ( ⊤ → 0 ∈ ℝ ) |
6 |
|
2lt4 |
⊢ 2 < 4 |
7 |
6
|
a1i |
⊢ ( ⊤ → 2 < 4 ) |
8 |
|
iccssre |
⊢ ( ( 2 ∈ ℝ ∧ 4 ∈ ℝ ) → ( 2 [,] 4 ) ⊆ ℝ ) |
9 |
1 3 8
|
mp2an |
⊢ ( 2 [,] 4 ) ⊆ ℝ |
10 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
11 |
9 10
|
sstri |
⊢ ( 2 [,] 4 ) ⊆ ℂ |
12 |
11
|
a1i |
⊢ ( ⊤ → ( 2 [,] 4 ) ⊆ ℂ ) |
13 |
|
sincn |
⊢ sin ∈ ( ℂ –cn→ ℂ ) |
14 |
13
|
a1i |
⊢ ( ⊤ → sin ∈ ( ℂ –cn→ ℂ ) ) |
15 |
9
|
sseli |
⊢ ( 𝑦 ∈ ( 2 [,] 4 ) → 𝑦 ∈ ℝ ) |
16 |
15
|
resincld |
⊢ ( 𝑦 ∈ ( 2 [,] 4 ) → ( sin ‘ 𝑦 ) ∈ ℝ ) |
17 |
16
|
adantl |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 2 [,] 4 ) ) → ( sin ‘ 𝑦 ) ∈ ℝ ) |
18 |
|
sin4lt0 |
⊢ ( sin ‘ 4 ) < 0 |
19 |
|
sincos2sgn |
⊢ ( 0 < ( sin ‘ 2 ) ∧ ( cos ‘ 2 ) < 0 ) |
20 |
19
|
simpli |
⊢ 0 < ( sin ‘ 2 ) |
21 |
18 20
|
pm3.2i |
⊢ ( ( sin ‘ 4 ) < 0 ∧ 0 < ( sin ‘ 2 ) ) |
22 |
21
|
a1i |
⊢ ( ⊤ → ( ( sin ‘ 4 ) < 0 ∧ 0 < ( sin ‘ 2 ) ) ) |
23 |
2 4 5 7 12 14 17 22
|
ivth2 |
⊢ ( ⊤ → ∃ 𝑥 ∈ ( 2 (,) 4 ) ( sin ‘ 𝑥 ) = 0 ) |
24 |
23
|
mptru |
⊢ ∃ 𝑥 ∈ ( 2 (,) 4 ) ( sin ‘ 𝑥 ) = 0 |
25 |
|
df-pi |
⊢ π = inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) |
26 |
|
inss1 |
⊢ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ⊆ ℝ+ |
27 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
28 |
26 27
|
sstri |
⊢ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ⊆ ℝ |
29 |
|
0re |
⊢ 0 ∈ ℝ |
30 |
26
|
sseli |
⊢ ( 𝑧 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) → 𝑧 ∈ ℝ+ ) |
31 |
30
|
rpge0d |
⊢ ( 𝑧 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) → 0 ≤ 𝑧 ) |
32 |
31
|
rgen |
⊢ ∀ 𝑧 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 0 ≤ 𝑧 |
33 |
|
breq1 |
⊢ ( 𝑦 = 0 → ( 𝑦 ≤ 𝑧 ↔ 0 ≤ 𝑧 ) ) |
34 |
33
|
ralbidv |
⊢ ( 𝑦 = 0 → ( ∀ 𝑧 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑦 ≤ 𝑧 ↔ ∀ 𝑧 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 0 ≤ 𝑧 ) ) |
35 |
34
|
rspcev |
⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑧 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 0 ≤ 𝑧 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑦 ≤ 𝑧 ) |
36 |
29 32 35
|
mp2an |
⊢ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑦 ≤ 𝑧 |
37 |
|
elioore |
⊢ ( 𝑥 ∈ ( 2 (,) 4 ) → 𝑥 ∈ ℝ ) |
38 |
37
|
adantr |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → 𝑥 ∈ ℝ ) |
39 |
|
0red |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → 0 ∈ ℝ ) |
40 |
1
|
a1i |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → 2 ∈ ℝ ) |
41 |
|
2pos |
⊢ 0 < 2 |
42 |
41
|
a1i |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → 0 < 2 ) |
43 |
|
eliooord |
⊢ ( 𝑥 ∈ ( 2 (,) 4 ) → ( 2 < 𝑥 ∧ 𝑥 < 4 ) ) |
44 |
43
|
simpld |
⊢ ( 𝑥 ∈ ( 2 (,) 4 ) → 2 < 𝑥 ) |
45 |
44
|
adantr |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → 2 < 𝑥 ) |
46 |
39 40 38 42 45
|
lttrd |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → 0 < 𝑥 ) |
47 |
38 46
|
elrpd |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → 𝑥 ∈ ℝ+ ) |
48 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( sin ‘ 𝑥 ) = 0 ) |
49 |
|
pilem1 |
⊢ ( 𝑥 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ↔ ( 𝑥 ∈ ℝ+ ∧ ( sin ‘ 𝑥 ) = 0 ) ) |
50 |
47 48 49
|
sylanbrc |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → 𝑥 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) |
51 |
|
infrelb |
⊢ ( ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ⊆ ℝ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑦 ≤ 𝑧 ∧ 𝑥 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) → inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ≤ 𝑥 ) |
52 |
28 36 50 51
|
mp3an12i |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ≤ 𝑥 ) |
53 |
25 52
|
eqbrtrid |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → π ≤ 𝑥 ) |
54 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) ∧ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) → 𝑥 ∈ ( 2 (,) 4 ) ) |
55 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) ∧ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) → 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) |
56 |
|
pilem1 |
⊢ ( 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ↔ ( 𝑦 ∈ ℝ+ ∧ ( sin ‘ 𝑦 ) = 0 ) ) |
57 |
55 56
|
sylib |
⊢ ( ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) ∧ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) → ( 𝑦 ∈ ℝ+ ∧ ( sin ‘ 𝑦 ) = 0 ) ) |
58 |
57
|
simpld |
⊢ ( ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) ∧ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) → 𝑦 ∈ ℝ+ ) |
59 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) ∧ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) → ( sin ‘ 𝑥 ) = 0 ) |
60 |
57
|
simprd |
⊢ ( ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) ∧ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) → ( sin ‘ 𝑦 ) = 0 ) |
61 |
54 58 59 60
|
pilem2 |
⊢ ( ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) ∧ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) → ( ( π + 𝑥 ) / 2 ) ≤ 𝑦 ) |
62 |
61
|
ralrimiva |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ( ( π + 𝑥 ) / 2 ) ≤ 𝑦 ) |
63 |
28
|
a1i |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ⊆ ℝ ) |
64 |
50
|
ne0d |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ≠ ∅ ) |
65 |
36
|
a1i |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑦 ≤ 𝑧 ) |
66 |
|
infrecl |
⊢ ( ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ⊆ ℝ ∧ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑦 ≤ 𝑧 ) → inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ∈ ℝ ) |
67 |
28 36 66
|
mp3an13 |
⊢ ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ≠ ∅ → inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ∈ ℝ ) |
68 |
64 67
|
syl |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ∈ ℝ ) |
69 |
25 68
|
eqeltrid |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → π ∈ ℝ ) |
70 |
69 38
|
readdcld |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( π + 𝑥 ) ∈ ℝ ) |
71 |
70
|
rehalfcld |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( ( π + 𝑥 ) / 2 ) ∈ ℝ ) |
72 |
|
infregelb |
⊢ ( ( ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ⊆ ℝ ∧ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑦 ≤ 𝑧 ) ∧ ( ( π + 𝑥 ) / 2 ) ∈ ℝ ) → ( ( ( π + 𝑥 ) / 2 ) ≤ inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ↔ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ( ( π + 𝑥 ) / 2 ) ≤ 𝑦 ) ) |
73 |
63 64 65 71 72
|
syl31anc |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( ( ( π + 𝑥 ) / 2 ) ≤ inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ↔ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ( ( π + 𝑥 ) / 2 ) ≤ 𝑦 ) ) |
74 |
62 73
|
mpbird |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( ( π + 𝑥 ) / 2 ) ≤ inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ) |
75 |
74 25
|
breqtrrdi |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( ( π + 𝑥 ) / 2 ) ≤ π ) |
76 |
69
|
recnd |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → π ∈ ℂ ) |
77 |
38
|
recnd |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → 𝑥 ∈ ℂ ) |
78 |
76 77
|
addcomd |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( π + 𝑥 ) = ( 𝑥 + π ) ) |
79 |
78
|
oveq1d |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( ( π + 𝑥 ) / 2 ) = ( ( 𝑥 + π ) / 2 ) ) |
80 |
79
|
breq1d |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( ( ( π + 𝑥 ) / 2 ) ≤ π ↔ ( ( 𝑥 + π ) / 2 ) ≤ π ) ) |
81 |
|
avgle2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ π ∈ ℝ ) → ( 𝑥 ≤ π ↔ ( ( 𝑥 + π ) / 2 ) ≤ π ) ) |
82 |
38 69 81
|
syl2anc |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( 𝑥 ≤ π ↔ ( ( 𝑥 + π ) / 2 ) ≤ π ) ) |
83 |
80 82
|
bitr4d |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( ( ( π + 𝑥 ) / 2 ) ≤ π ↔ 𝑥 ≤ π ) ) |
84 |
75 83
|
mpbid |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → 𝑥 ≤ π ) |
85 |
69 38
|
letri3d |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( π = 𝑥 ↔ ( π ≤ 𝑥 ∧ 𝑥 ≤ π ) ) ) |
86 |
53 84 85
|
mpbir2and |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → π = 𝑥 ) |
87 |
|
simpl |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → 𝑥 ∈ ( 2 (,) 4 ) ) |
88 |
86 87
|
eqeltrd |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → π ∈ ( 2 (,) 4 ) ) |
89 |
86
|
fveq2d |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( sin ‘ π ) = ( sin ‘ 𝑥 ) ) |
90 |
89 48
|
eqtrd |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( sin ‘ π ) = 0 ) |
91 |
88 90
|
jca |
⊢ ( ( 𝑥 ∈ ( 2 (,) 4 ) ∧ ( sin ‘ 𝑥 ) = 0 ) → ( π ∈ ( 2 (,) 4 ) ∧ ( sin ‘ π ) = 0 ) ) |
92 |
91
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ ( 2 (,) 4 ) ( sin ‘ 𝑥 ) = 0 → ( π ∈ ( 2 (,) 4 ) ∧ ( sin ‘ π ) = 0 ) ) |
93 |
24 92
|
ax-mp |
⊢ ( π ∈ ( 2 (,) 4 ) ∧ ( sin ‘ π ) = 0 ) |