Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
⊢ ( 𝑥 = 〈 𝐴 , 1o 〉 → ( 𝑥 ~Q 𝑦 ↔ 〈 𝐴 , 1o 〉 ~Q 𝑦 ) ) |
2 |
|
fveq2 |
⊢ ( 𝑥 = 〈 𝐴 , 1o 〉 → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 〈 𝐴 , 1o 〉 ) ) |
3 |
2
|
breq2d |
⊢ ( 𝑥 = 〈 𝐴 , 1o 〉 → ( ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ↔ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 〈 𝐴 , 1o 〉 ) ) ) |
4 |
3
|
notbid |
⊢ ( 𝑥 = 〈 𝐴 , 1o 〉 → ( ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ↔ ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 〈 𝐴 , 1o 〉 ) ) ) |
5 |
1 4
|
imbi12d |
⊢ ( 𝑥 = 〈 𝐴 , 1o 〉 → ( ( 𝑥 ~Q 𝑦 → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ↔ ( 〈 𝐴 , 1o 〉 ~Q 𝑦 → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 〈 𝐴 , 1o 〉 ) ) ) ) |
6 |
5
|
ralbidv |
⊢ ( 𝑥 = 〈 𝐴 , 1o 〉 → ( ∀ 𝑦 ∈ ( N × N ) ( 𝑥 ~Q 𝑦 → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ↔ ∀ 𝑦 ∈ ( N × N ) ( 〈 𝐴 , 1o 〉 ~Q 𝑦 → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 〈 𝐴 , 1o 〉 ) ) ) ) |
7 |
|
1pi |
⊢ 1o ∈ N |
8 |
|
opelxpi |
⊢ ( ( 𝐴 ∈ N ∧ 1o ∈ N ) → 〈 𝐴 , 1o 〉 ∈ ( N × N ) ) |
9 |
7 8
|
mpan2 |
⊢ ( 𝐴 ∈ N → 〈 𝐴 , 1o 〉 ∈ ( N × N ) ) |
10 |
|
nlt1pi |
⊢ ¬ ( 2nd ‘ 𝑦 ) <N 1o |
11 |
|
1oex |
⊢ 1o ∈ V |
12 |
|
op2ndg |
⊢ ( ( 𝐴 ∈ N ∧ 1o ∈ V ) → ( 2nd ‘ 〈 𝐴 , 1o 〉 ) = 1o ) |
13 |
11 12
|
mpan2 |
⊢ ( 𝐴 ∈ N → ( 2nd ‘ 〈 𝐴 , 1o 〉 ) = 1o ) |
14 |
13
|
breq2d |
⊢ ( 𝐴 ∈ N → ( ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 〈 𝐴 , 1o 〉 ) ↔ ( 2nd ‘ 𝑦 ) <N 1o ) ) |
15 |
10 14
|
mtbiri |
⊢ ( 𝐴 ∈ N → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 〈 𝐴 , 1o 〉 ) ) |
16 |
15
|
a1d |
⊢ ( 𝐴 ∈ N → ( 〈 𝐴 , 1o 〉 ~Q 𝑦 → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 〈 𝐴 , 1o 〉 ) ) ) |
17 |
16
|
ralrimivw |
⊢ ( 𝐴 ∈ N → ∀ 𝑦 ∈ ( N × N ) ( 〈 𝐴 , 1o 〉 ~Q 𝑦 → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 〈 𝐴 , 1o 〉 ) ) ) |
18 |
6 9 17
|
elrabd |
⊢ ( 𝐴 ∈ N → 〈 𝐴 , 1o 〉 ∈ { 𝑥 ∈ ( N × N ) ∣ ∀ 𝑦 ∈ ( N × N ) ( 𝑥 ~Q 𝑦 → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) } ) |
19 |
|
df-nq |
⊢ Q = { 𝑥 ∈ ( N × N ) ∣ ∀ 𝑦 ∈ ( N × N ) ( 𝑥 ~Q 𝑦 → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) } |
20 |
18 19
|
eleqtrrdi |
⊢ ( 𝐴 ∈ N → 〈 𝐴 , 1o 〉 ∈ Q ) |