Metamath Proof Explorer


Theorem pj11i

Description: One-to-one correspondence of projection and subspace. (Contributed by NM, 26-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjsumt.1 𝐺C
pjsumt.2 𝐻C
Assertion pj11i ( ( proj𝐺 ) = ( proj𝐻 ) ↔ 𝐺 = 𝐻 )

Proof

Step Hyp Ref Expression
1 pjsumt.1 𝐺C
2 pjsumt.2 𝐻C
3 rneq ( ( proj𝐺 ) = ( proj𝐻 ) → ran ( proj𝐺 ) = ran ( proj𝐻 ) )
4 1 pjrni ran ( proj𝐺 ) = 𝐺
5 2 pjrni ran ( proj𝐻 ) = 𝐻
6 3 4 5 3eqtr3g ( ( proj𝐺 ) = ( proj𝐻 ) → 𝐺 = 𝐻 )
7 fveq2 ( 𝐺 = 𝐻 → ( proj𝐺 ) = ( proj𝐻 ) )
8 6 7 impbii ( ( proj𝐺 ) = ( proj𝐻 ) ↔ 𝐺 = 𝐻 )