| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pj1eu.a | 
							⊢  +   =  ( +g ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							pj1eu.s | 
							⊢  ⊕   =  ( LSSum ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							pj1eu.o | 
							⊢  0   =  ( 0g ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							pj1eu.z | 
							⊢ 𝑍  =  ( Cntz ‘ 𝐺 )  | 
						
						
							| 5 | 
							
								
							 | 
							pj1eu.2 | 
							⊢ ( 𝜑  →  𝑇  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							pj1eu.3 | 
							⊢ ( 𝜑  →  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							pj1eu.4 | 
							⊢ ( 𝜑  →  ( 𝑇  ∩  𝑈 )  =  {  0  } )  | 
						
						
							| 8 | 
							
								
							 | 
							pj1eu.5 | 
							⊢ ( 𝜑  →  𝑇  ⊆  ( 𝑍 ‘ 𝑈 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							pj1f.p | 
							⊢ 𝑃  =  ( proj1 ‘ 𝐺 )  | 
						
						
							| 10 | 
							
								
							 | 
							pj1eq.5 | 
							⊢ ( 𝜑  →  𝑋  ∈  ( 𝑇  ⊕  𝑈 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							pj1eq.6 | 
							⊢ ( 𝜑  →  𝐵  ∈  𝑇 )  | 
						
						
							| 12 | 
							
								
							 | 
							pj1eq.7 | 
							⊢ ( 𝜑  →  𝐶  ∈  𝑈 )  | 
						
						
							| 13 | 
							
								1 2 3 4 5 6 7 8 9
							 | 
							pj1id | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑇  ⊕  𝑈 ) )  →  𝑋  =  ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 )  +  ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) ) )  | 
						
						
							| 14 | 
							
								10 13
							 | 
							mpdan | 
							⊢ ( 𝜑  →  𝑋  =  ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 )  +  ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							eqeq1d | 
							⊢ ( 𝜑  →  ( 𝑋  =  ( 𝐵  +  𝐶 )  ↔  ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 )  +  ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) )  =  ( 𝐵  +  𝐶 ) ) )  | 
						
						
							| 16 | 
							
								1 2 3 4 5 6 7 8 9
							 | 
							pj1f | 
							⊢ ( 𝜑  →  ( 𝑇 𝑃 𝑈 ) : ( 𝑇  ⊕  𝑈 ) ⟶ 𝑇 )  | 
						
						
							| 17 | 
							
								16 10
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 )  ∈  𝑇 )  | 
						
						
							| 18 | 
							
								1 2 3 4 5 6 7 8 9
							 | 
							pj2f | 
							⊢ ( 𝜑  →  ( 𝑈 𝑃 𝑇 ) : ( 𝑇  ⊕  𝑈 ) ⟶ 𝑈 )  | 
						
						
							| 19 | 
							
								18 10
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 )  ∈  𝑈 )  | 
						
						
							| 20 | 
							
								1 3 4 5 6 7 8 17 11 19 12
							 | 
							subgdisjb | 
							⊢ ( 𝜑  →  ( ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 )  +  ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) )  =  ( 𝐵  +  𝐶 )  ↔  ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 )  =  𝐵  ∧  ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 )  =  𝐶 ) ) )  | 
						
						
							| 21 | 
							
								15 20
							 | 
							bitrd | 
							⊢ ( 𝜑  →  ( 𝑋  =  ( 𝐵  +  𝐶 )  ↔  ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 )  =  𝐵  ∧  ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 )  =  𝐶 ) ) )  |