Metamath Proof Explorer


Theorem pj1eq

Description: Any element of a direct subspace sum can be decomposed uniquely into projections onto the left and right factors. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses pj1eu.a + = ( +g𝐺 )
pj1eu.s = ( LSSum ‘ 𝐺 )
pj1eu.o 0 = ( 0g𝐺 )
pj1eu.z 𝑍 = ( Cntz ‘ 𝐺 )
pj1eu.2 ( 𝜑𝑇 ∈ ( SubGrp ‘ 𝐺 ) )
pj1eu.3 ( 𝜑𝑈 ∈ ( SubGrp ‘ 𝐺 ) )
pj1eu.4 ( 𝜑 → ( 𝑇𝑈 ) = { 0 } )
pj1eu.5 ( 𝜑𝑇 ⊆ ( 𝑍𝑈 ) )
pj1f.p 𝑃 = ( proj1𝐺 )
pj1eq.5 ( 𝜑𝑋 ∈ ( 𝑇 𝑈 ) )
pj1eq.6 ( 𝜑𝐵𝑇 )
pj1eq.7 ( 𝜑𝐶𝑈 )
Assertion pj1eq ( 𝜑 → ( 𝑋 = ( 𝐵 + 𝐶 ) ↔ ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) = 𝐵 ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) = 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 pj1eu.a + = ( +g𝐺 )
2 pj1eu.s = ( LSSum ‘ 𝐺 )
3 pj1eu.o 0 = ( 0g𝐺 )
4 pj1eu.z 𝑍 = ( Cntz ‘ 𝐺 )
5 pj1eu.2 ( 𝜑𝑇 ∈ ( SubGrp ‘ 𝐺 ) )
6 pj1eu.3 ( 𝜑𝑈 ∈ ( SubGrp ‘ 𝐺 ) )
7 pj1eu.4 ( 𝜑 → ( 𝑇𝑈 ) = { 0 } )
8 pj1eu.5 ( 𝜑𝑇 ⊆ ( 𝑍𝑈 ) )
9 pj1f.p 𝑃 = ( proj1𝐺 )
10 pj1eq.5 ( 𝜑𝑋 ∈ ( 𝑇 𝑈 ) )
11 pj1eq.6 ( 𝜑𝐵𝑇 )
12 pj1eq.7 ( 𝜑𝐶𝑈 )
13 1 2 3 4 5 6 7 8 9 pj1id ( ( 𝜑𝑋 ∈ ( 𝑇 𝑈 ) ) → 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) ) )
14 10 13 mpdan ( 𝜑𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) ) )
15 14 eqeq1d ( 𝜑 → ( 𝑋 = ( 𝐵 + 𝐶 ) ↔ ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) ) = ( 𝐵 + 𝐶 ) ) )
16 1 2 3 4 5 6 7 8 9 pj1f ( 𝜑 → ( 𝑇 𝑃 𝑈 ) : ( 𝑇 𝑈 ) ⟶ 𝑇 )
17 16 10 ffvelrnd ( 𝜑 → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) ∈ 𝑇 )
18 1 2 3 4 5 6 7 8 9 pj2f ( 𝜑 → ( 𝑈 𝑃 𝑇 ) : ( 𝑇 𝑈 ) ⟶ 𝑈 )
19 18 10 ffvelrnd ( 𝜑 → ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) ∈ 𝑈 )
20 1 3 4 5 6 7 8 17 11 19 12 subgdisjb ( 𝜑 → ( ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) ) = ( 𝐵 + 𝐶 ) ↔ ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) = 𝐵 ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) = 𝐶 ) ) )
21 15 20 bitrd ( 𝜑 → ( 𝑋 = ( 𝐵 + 𝐶 ) ↔ ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) = 𝐵 ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) = 𝐶 ) ) )