| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pj1eu.a | 
							⊢  +   =  ( +g ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							pj1eu.s | 
							⊢  ⊕   =  ( LSSum ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							pj1eu.o | 
							⊢  0   =  ( 0g ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							pj1eu.z | 
							⊢ 𝑍  =  ( Cntz ‘ 𝐺 )  | 
						
						
							| 5 | 
							
								
							 | 
							pj1eu.2 | 
							⊢ ( 𝜑  →  𝑇  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							pj1eu.3 | 
							⊢ ( 𝜑  →  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							pj1eu.4 | 
							⊢ ( 𝜑  →  ( 𝑇  ∩  𝑈 )  =  {  0  } )  | 
						
						
							| 8 | 
							
								
							 | 
							pj1eu.5 | 
							⊢ ( 𝜑  →  𝑇  ⊆  ( 𝑍 ‘ 𝑈 ) )  | 
						
						
							| 9 | 
							
								1 2
							 | 
							lsmelval | 
							⊢ ( ( 𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( 𝑋  ∈  ( 𝑇  ⊕  𝑈 )  ↔  ∃ 𝑥  ∈  𝑇 ∃ 𝑦  ∈  𝑈 𝑋  =  ( 𝑥  +  𝑦 ) ) )  | 
						
						
							| 10 | 
							
								5 6 9
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝑇  ⊕  𝑈 )  ↔  ∃ 𝑥  ∈  𝑇 ∃ 𝑦  ∈  𝑈 𝑋  =  ( 𝑥  +  𝑦 ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							biimpa | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑇  ⊕  𝑈 ) )  →  ∃ 𝑥  ∈  𝑇 ∃ 𝑦  ∈  𝑈 𝑋  =  ( 𝑥  +  𝑦 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							reeanv | 
							⊢ ( ∃ 𝑦  ∈  𝑈 ∃ 𝑣  ∈  𝑈 ( 𝑋  =  ( 𝑥  +  𝑦 )  ∧  𝑋  =  ( 𝑢  +  𝑣 ) )  ↔  ( ∃ 𝑦  ∈  𝑈 𝑋  =  ( 𝑥  +  𝑦 )  ∧  ∃ 𝑣  ∈  𝑈 𝑋  =  ( 𝑢  +  𝑣 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							eqtr2 | 
							⊢ ( ( 𝑋  =  ( 𝑥  +  𝑦 )  ∧  𝑋  =  ( 𝑢  +  𝑣 ) )  →  ( 𝑥  +  𝑦 )  =  ( 𝑢  +  𝑣 ) )  | 
						
						
							| 14 | 
							
								5
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑇  ∧  𝑢  ∈  𝑇 ) )  ∧  ( 𝑦  ∈  𝑈  ∧  𝑣  ∈  𝑈 ) )  →  𝑇  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 15 | 
							
								6
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑇  ∧  𝑢  ∈  𝑇 ) )  ∧  ( 𝑦  ∈  𝑈  ∧  𝑣  ∈  𝑈 ) )  →  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 16 | 
							
								7
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑇  ∧  𝑢  ∈  𝑇 ) )  ∧  ( 𝑦  ∈  𝑈  ∧  𝑣  ∈  𝑈 ) )  →  ( 𝑇  ∩  𝑈 )  =  {  0  } )  | 
						
						
							| 17 | 
							
								8
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑇  ∧  𝑢  ∈  𝑇 ) )  ∧  ( 𝑦  ∈  𝑈  ∧  𝑣  ∈  𝑈 ) )  →  𝑇  ⊆  ( 𝑍 ‘ 𝑈 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							simplrl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑇  ∧  𝑢  ∈  𝑇 ) )  ∧  ( 𝑦  ∈  𝑈  ∧  𝑣  ∈  𝑈 ) )  →  𝑥  ∈  𝑇 )  | 
						
						
							| 19 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑇  ∧  𝑢  ∈  𝑇 ) )  ∧  ( 𝑦  ∈  𝑈  ∧  𝑣  ∈  𝑈 ) )  →  𝑢  ∈  𝑇 )  | 
						
						
							| 20 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑇  ∧  𝑢  ∈  𝑇 ) )  ∧  ( 𝑦  ∈  𝑈  ∧  𝑣  ∈  𝑈 ) )  →  𝑦  ∈  𝑈 )  | 
						
						
							| 21 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑇  ∧  𝑢  ∈  𝑇 ) )  ∧  ( 𝑦  ∈  𝑈  ∧  𝑣  ∈  𝑈 ) )  →  𝑣  ∈  𝑈 )  | 
						
						
							| 22 | 
							
								1 3 4 14 15 16 17 18 19 20 21
							 | 
							subgdisjb | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑇  ∧  𝑢  ∈  𝑇 ) )  ∧  ( 𝑦  ∈  𝑈  ∧  𝑣  ∈  𝑈 ) )  →  ( ( 𝑥  +  𝑦 )  =  ( 𝑢  +  𝑣 )  ↔  ( 𝑥  =  𝑢  ∧  𝑦  =  𝑣 ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑣 )  →  𝑥  =  𝑢 )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							biimtrdi | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑇  ∧  𝑢  ∈  𝑇 ) )  ∧  ( 𝑦  ∈  𝑈  ∧  𝑣  ∈  𝑈 ) )  →  ( ( 𝑥  +  𝑦 )  =  ( 𝑢  +  𝑣 )  →  𝑥  =  𝑢 ) )  | 
						
						
							| 25 | 
							
								13 24
							 | 
							syl5 | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑇  ∧  𝑢  ∈  𝑇 ) )  ∧  ( 𝑦  ∈  𝑈  ∧  𝑣  ∈  𝑈 ) )  →  ( ( 𝑋  =  ( 𝑥  +  𝑦 )  ∧  𝑋  =  ( 𝑢  +  𝑣 ) )  →  𝑥  =  𝑢 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							rexlimdvva | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑇  ∧  𝑢  ∈  𝑇 ) )  →  ( ∃ 𝑦  ∈  𝑈 ∃ 𝑣  ∈  𝑈 ( 𝑋  =  ( 𝑥  +  𝑦 )  ∧  𝑋  =  ( 𝑢  +  𝑣 ) )  →  𝑥  =  𝑢 ) )  | 
						
						
							| 27 | 
							
								12 26
							 | 
							biimtrrid | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑇  ∧  𝑢  ∈  𝑇 ) )  →  ( ( ∃ 𝑦  ∈  𝑈 𝑋  =  ( 𝑥  +  𝑦 )  ∧  ∃ 𝑣  ∈  𝑈 𝑋  =  ( 𝑢  +  𝑣 ) )  →  𝑥  =  𝑢 ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							ralrimivva | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑇 ∀ 𝑢  ∈  𝑇 ( ( ∃ 𝑦  ∈  𝑈 𝑋  =  ( 𝑥  +  𝑦 )  ∧  ∃ 𝑣  ∈  𝑈 𝑋  =  ( 𝑢  +  𝑣 ) )  →  𝑥  =  𝑢 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑇  ⊕  𝑈 ) )  →  ∀ 𝑥  ∈  𝑇 ∀ 𝑢  ∈  𝑇 ( ( ∃ 𝑦  ∈  𝑈 𝑋  =  ( 𝑥  +  𝑦 )  ∧  ∃ 𝑣  ∈  𝑈 𝑋  =  ( 𝑢  +  𝑣 ) )  →  𝑥  =  𝑢 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  𝑢  →  ( 𝑥  +  𝑦 )  =  ( 𝑢  +  𝑦 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							eqeq2d | 
							⊢ ( 𝑥  =  𝑢  →  ( 𝑋  =  ( 𝑥  +  𝑦 )  ↔  𝑋  =  ( 𝑢  +  𝑦 ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							rexbidv | 
							⊢ ( 𝑥  =  𝑢  →  ( ∃ 𝑦  ∈  𝑈 𝑋  =  ( 𝑥  +  𝑦 )  ↔  ∃ 𝑦  ∈  𝑈 𝑋  =  ( 𝑢  +  𝑦 ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑦  =  𝑣  →  ( 𝑢  +  𝑦 )  =  ( 𝑢  +  𝑣 ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							eqeq2d | 
							⊢ ( 𝑦  =  𝑣  →  ( 𝑋  =  ( 𝑢  +  𝑦 )  ↔  𝑋  =  ( 𝑢  +  𝑣 ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							cbvrexvw | 
							⊢ ( ∃ 𝑦  ∈  𝑈 𝑋  =  ( 𝑢  +  𝑦 )  ↔  ∃ 𝑣  ∈  𝑈 𝑋  =  ( 𝑢  +  𝑣 ) )  | 
						
						
							| 36 | 
							
								32 35
							 | 
							bitrdi | 
							⊢ ( 𝑥  =  𝑢  →  ( ∃ 𝑦  ∈  𝑈 𝑋  =  ( 𝑥  +  𝑦 )  ↔  ∃ 𝑣  ∈  𝑈 𝑋  =  ( 𝑢  +  𝑣 ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							reu4 | 
							⊢ ( ∃! 𝑥  ∈  𝑇 ∃ 𝑦  ∈  𝑈 𝑋  =  ( 𝑥  +  𝑦 )  ↔  ( ∃ 𝑥  ∈  𝑇 ∃ 𝑦  ∈  𝑈 𝑋  =  ( 𝑥  +  𝑦 )  ∧  ∀ 𝑥  ∈  𝑇 ∀ 𝑢  ∈  𝑇 ( ( ∃ 𝑦  ∈  𝑈 𝑋  =  ( 𝑥  +  𝑦 )  ∧  ∃ 𝑣  ∈  𝑈 𝑋  =  ( 𝑢  +  𝑣 ) )  →  𝑥  =  𝑢 ) ) )  | 
						
						
							| 38 | 
							
								11 29 37
							 | 
							sylanbrc | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑇  ⊕  𝑈 ) )  →  ∃! 𝑥  ∈  𝑇 ∃ 𝑦  ∈  𝑈 𝑋  =  ( 𝑥  +  𝑦 ) )  |