Step |
Hyp |
Ref |
Expression |
1 |
|
pj1fval.v |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
pj1fval.a |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
pj1fval.s |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
4 |
|
pj1fval.p |
⊢ 𝑃 = ( proj1 ‘ 𝐺 ) |
5 |
|
elex |
⊢ ( 𝐺 ∈ 𝑉 → 𝐺 ∈ V ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → 𝐺 ∈ V ) |
7 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) |
8 |
7 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = 𝐵 ) |
9 |
8
|
pweqd |
⊢ ( 𝑔 = 𝐺 → 𝒫 ( Base ‘ 𝑔 ) = 𝒫 𝐵 ) |
10 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( LSSum ‘ 𝑔 ) = ( LSSum ‘ 𝐺 ) ) |
11 |
10 3
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( LSSum ‘ 𝑔 ) = ⊕ ) |
12 |
11
|
oveqd |
⊢ ( 𝑔 = 𝐺 → ( 𝑡 ( LSSum ‘ 𝑔 ) 𝑢 ) = ( 𝑡 ⊕ 𝑢 ) ) |
13 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( +g ‘ 𝑔 ) = ( +g ‘ 𝐺 ) ) |
14 |
13 2
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( +g ‘ 𝑔 ) = + ) |
15 |
14
|
oveqd |
⊢ ( 𝑔 = 𝐺 → ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
16 |
15
|
eqeq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑧 = ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) ↔ 𝑧 = ( 𝑥 + 𝑦 ) ) ) |
17 |
16
|
rexbidv |
⊢ ( 𝑔 = 𝐺 → ( ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) ↔ ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) ) |
18 |
17
|
riotabidv |
⊢ ( 𝑔 = 𝐺 → ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) ) = ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) ) |
19 |
12 18
|
mpteq12dv |
⊢ ( 𝑔 = 𝐺 → ( 𝑧 ∈ ( 𝑡 ( LSSum ‘ 𝑔 ) 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) ) ) = ( 𝑧 ∈ ( 𝑡 ⊕ 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) |
20 |
9 9 19
|
mpoeq123dv |
⊢ ( 𝑔 = 𝐺 → ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑔 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑔 ) ↦ ( 𝑧 ∈ ( 𝑡 ( LSSum ‘ 𝑔 ) 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) ) ) ) = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ( 𝑧 ∈ ( 𝑡 ⊕ 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) ) |
21 |
|
df-pj1 |
⊢ proj1 = ( 𝑔 ∈ V ↦ ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑔 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑔 ) ↦ ( 𝑧 ∈ ( 𝑡 ( LSSum ‘ 𝑔 ) 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 ( +g ‘ 𝑔 ) 𝑦 ) ) ) ) ) |
22 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
23 |
22
|
pwex |
⊢ 𝒫 𝐵 ∈ V |
24 |
23 23
|
mpoex |
⊢ ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ( 𝑧 ∈ ( 𝑡 ⊕ 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) ∈ V |
25 |
20 21 24
|
fvmpt |
⊢ ( 𝐺 ∈ V → ( proj1 ‘ 𝐺 ) = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ( 𝑧 ∈ ( 𝑡 ⊕ 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) ) |
26 |
6 25
|
syl |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( proj1 ‘ 𝐺 ) = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ( 𝑧 ∈ ( 𝑡 ⊕ 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) ) |
27 |
4 26
|
eqtrid |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → 𝑃 = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ( 𝑧 ∈ ( 𝑡 ⊕ 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) ) |
28 |
|
oveq12 |
⊢ ( ( 𝑡 = 𝑇 ∧ 𝑢 = 𝑈 ) → ( 𝑡 ⊕ 𝑢 ) = ( 𝑇 ⊕ 𝑈 ) ) |
29 |
28
|
adantl |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑡 = 𝑇 ∧ 𝑢 = 𝑈 ) ) → ( 𝑡 ⊕ 𝑢 ) = ( 𝑇 ⊕ 𝑈 ) ) |
30 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑡 = 𝑇 ∧ 𝑢 = 𝑈 ) ) → 𝑡 = 𝑇 ) |
31 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑡 = 𝑇 ∧ 𝑢 = 𝑈 ) ) → 𝑢 = 𝑈 ) |
32 |
31
|
rexeqdv |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑡 = 𝑇 ∧ 𝑢 = 𝑈 ) ) → ( ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 + 𝑦 ) ↔ ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) |
33 |
30 32
|
riotaeqbidv |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑡 = 𝑇 ∧ 𝑢 = 𝑈 ) ) → ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) = ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) |
34 |
29 33
|
mpteq12dv |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑡 = 𝑇 ∧ 𝑢 = 𝑈 ) ) → ( 𝑧 ∈ ( 𝑡 ⊕ 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) ) = ( 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) ↦ ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) |
35 |
|
simp2 |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → 𝑇 ⊆ 𝐵 ) |
36 |
22
|
elpw2 |
⊢ ( 𝑇 ∈ 𝒫 𝐵 ↔ 𝑇 ⊆ 𝐵 ) |
37 |
35 36
|
sylibr |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → 𝑇 ∈ 𝒫 𝐵 ) |
38 |
|
simp3 |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → 𝑈 ⊆ 𝐵 ) |
39 |
22
|
elpw2 |
⊢ ( 𝑈 ∈ 𝒫 𝐵 ↔ 𝑈 ⊆ 𝐵 ) |
40 |
38 39
|
sylibr |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → 𝑈 ∈ 𝒫 𝐵 ) |
41 |
|
ovex |
⊢ ( 𝑇 ⊕ 𝑈 ) ∈ V |
42 |
41
|
mptex |
⊢ ( 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) ↦ ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) ∈ V |
43 |
42
|
a1i |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) ↦ ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) ∈ V ) |
44 |
27 34 37 40 43
|
ovmpod |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑇 𝑃 𝑈 ) = ( 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) ↦ ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) |