Step |
Hyp |
Ref |
Expression |
1 |
|
pj1eu.a |
⊢ + = ( +g ‘ 𝐺 ) |
2 |
|
pj1eu.s |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
3 |
|
pj1eu.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
4 |
|
pj1eu.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
5 |
|
pj1eu.2 |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
6 |
|
pj1eu.3 |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
7 |
|
pj1eu.4 |
⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) |
8 |
|
pj1eu.5 |
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) |
9 |
|
pj1f.p |
⊢ 𝑃 = ( proj1 ‘ 𝐺 ) |
10 |
|
eqid |
⊢ ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) = ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
12 |
|
ovex |
⊢ ( 𝑇 ⊕ 𝑈 ) ∈ V |
13 |
|
eqid |
⊢ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) = ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) |
14 |
13 1
|
ressplusg |
⊢ ( ( 𝑇 ⊕ 𝑈 ) ∈ V → + = ( +g ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ) |
15 |
12 14
|
ax-mp |
⊢ + = ( +g ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) |
16 |
2 4
|
lsmsubg |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
17 |
5 6 8 16
|
syl3anc |
⊢ ( 𝜑 → ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
18 |
13
|
subggrp |
⊢ ( ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ∈ Grp ) |
19 |
17 18
|
syl |
⊢ ( 𝜑 → ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ∈ Grp ) |
20 |
|
subgrcl |
⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
21 |
5 20
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
22 |
1 2 3 4 5 6 7 8 9
|
pj1f |
⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑇 ) |
23 |
11
|
subgss |
⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
24 |
5 23
|
syl |
⊢ ( 𝜑 → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
25 |
22 24
|
fssd |
⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ ( Base ‘ 𝐺 ) ) |
26 |
13
|
subgbas |
⊢ ( ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑇 ⊕ 𝑈 ) = ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ) |
27 |
17 26
|
syl |
⊢ ( 𝜑 → ( 𝑇 ⊕ 𝑈 ) = ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ) |
28 |
27
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑇 𝑃 𝑈 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ ( Base ‘ 𝐺 ) ↔ ( 𝑇 𝑃 𝑈 ) : ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ⟶ ( Base ‘ 𝐺 ) ) ) |
29 |
25 28
|
mpbid |
⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) : ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ⟶ ( Base ‘ 𝐺 ) ) |
30 |
27
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ) ) |
31 |
27
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ 𝑦 ∈ ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ) ) |
32 |
30 31
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ↔ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ) ) ) |
33 |
32
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ) ) → ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
34 |
1 2 3 4 5 6 7 8 9
|
pj1id |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ) → 𝑥 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) ) ) |
35 |
34
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑥 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) ) ) |
36 |
1 2 3 4 5 6 7 8 9
|
pj1id |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) → 𝑦 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) |
37 |
36
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑦 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) |
38 |
35 37
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑥 + 𝑦 ) = ( ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) ) + ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ) |
39 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
40 |
|
grpmnd |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) |
41 |
39 20 40
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝐺 ∈ Mnd ) |
42 |
39 23
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
43 |
|
simpl |
⊢ ( ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) → 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ) |
44 |
|
ffvelrn |
⊢ ( ( ( 𝑇 𝑃 𝑈 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑇 ∧ 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) ∈ 𝑇 ) |
45 |
22 43 44
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) ∈ 𝑇 ) |
46 |
42 45
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐺 ) ) |
47 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) → 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) |
48 |
|
ffvelrn |
⊢ ( ( ( 𝑇 𝑃 𝑈 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑇 ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ∈ 𝑇 ) |
49 |
22 47 48
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ∈ 𝑇 ) |
50 |
42 49
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
51 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
52 |
11
|
subgss |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
53 |
51 52
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
54 |
1 2 3 4 5 6 7 8 9
|
pj2f |
⊢ ( 𝜑 → ( 𝑈 𝑃 𝑇 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑈 ) |
55 |
|
ffvelrn |
⊢ ( ( ( 𝑈 𝑃 𝑇 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑈 ∧ 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) ∈ 𝑈 ) |
56 |
54 43 55
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) ∈ 𝑈 ) |
57 |
53 56
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐺 ) ) |
58 |
|
ffvelrn |
⊢ ( ( ( 𝑈 𝑃 𝑇 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑈 ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ∈ 𝑈 ) |
59 |
54 47 58
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ∈ 𝑈 ) |
60 |
53 59
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
61 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) |
62 |
61 49
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ∈ ( 𝑍 ‘ 𝑈 ) ) |
63 |
1 4
|
cntzi |
⊢ ( ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ∈ ( 𝑍 ‘ 𝑈 ) ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) ∈ 𝑈 ) → ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) ) = ( ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ) |
64 |
62 56 63
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) ) = ( ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ) |
65 |
11 1 41 46 50 57 60 64
|
mnd4g |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) + ( ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) = ( ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) ) + ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ) |
66 |
38 65
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑥 + 𝑦 ) = ( ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) + ( ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ) |
67 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑇 ∩ 𝑈 ) = { 0 } ) |
68 |
1
|
subgcl |
⊢ ( ( ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ( 𝑥 + 𝑦 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
69 |
68
|
3expb |
⊢ ( ( ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑥 + 𝑦 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
70 |
17 69
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑥 + 𝑦 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
71 |
1
|
subgcl |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) ∈ 𝑇 ∧ ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ∈ 𝑇 ) → ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ∈ 𝑇 ) |
72 |
39 45 49 71
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ∈ 𝑇 ) |
73 |
1
|
subgcl |
⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) ∈ 𝑈 ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ∈ 𝑈 ) → ( ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ∈ 𝑈 ) |
74 |
51 56 59 73
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ∈ 𝑈 ) |
75 |
1 2 3 4 39 51 67 61 9 70 72 74
|
pj1eq |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑥 + 𝑦 ) = ( ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) + ( ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ↔ ( ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ) ) |
76 |
66 75
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑥 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ) |
77 |
76
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ) |
78 |
33 77
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑥 ) + ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ) |
79 |
10 11 15 1 19 21 29 78
|
isghmd |
⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) GrpHom 𝐺 ) ) |