Step |
Hyp |
Ref |
Expression |
1 |
|
pj1eu.a |
⊢ + = ( +g ‘ 𝐺 ) |
2 |
|
pj1eu.s |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
3 |
|
pj1eu.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
4 |
|
pj1eu.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
5 |
|
pj1eu.2 |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
6 |
|
pj1eu.3 |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
7 |
|
pj1eu.4 |
⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) |
8 |
|
pj1eu.5 |
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) |
9 |
|
pj1f.p |
⊢ 𝑃 = ( proj1 ‘ 𝐺 ) |
10 |
1 2 3 4 5 6 7 8 9
|
pj1ghm |
⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) GrpHom 𝐺 ) ) |
11 |
1 2 3 4 5 6 7 8 9
|
pj1f |
⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑇 ) |
12 |
11
|
frnd |
⊢ ( 𝜑 → ran ( 𝑇 𝑃 𝑈 ) ⊆ 𝑇 ) |
13 |
|
eqid |
⊢ ( 𝐺 ↾s 𝑇 ) = ( 𝐺 ↾s 𝑇 ) |
14 |
13
|
resghm2b |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ ran ( 𝑇 𝑃 𝑈 ) ⊆ 𝑇 ) → ( ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) GrpHom 𝐺 ) ↔ ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) GrpHom ( 𝐺 ↾s 𝑇 ) ) ) ) |
15 |
5 12 14
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) GrpHom 𝐺 ) ↔ ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) GrpHom ( 𝐺 ↾s 𝑇 ) ) ) ) |
16 |
10 15
|
mpbid |
⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝐺 ↾s ( 𝑇 ⊕ 𝑈 ) ) GrpHom ( 𝐺 ↾s 𝑇 ) ) ) |