| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pj1eu.a | 
							⊢  +   =  ( +g ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							pj1eu.s | 
							⊢  ⊕   =  ( LSSum ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							pj1eu.o | 
							⊢  0   =  ( 0g ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							pj1eu.z | 
							⊢ 𝑍  =  ( Cntz ‘ 𝐺 )  | 
						
						
							| 5 | 
							
								
							 | 
							pj1eu.2 | 
							⊢ ( 𝜑  →  𝑇  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							pj1eu.3 | 
							⊢ ( 𝜑  →  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							pj1eu.4 | 
							⊢ ( 𝜑  →  ( 𝑇  ∩  𝑈 )  =  {  0  } )  | 
						
						
							| 8 | 
							
								
							 | 
							pj1eu.5 | 
							⊢ ( 𝜑  →  𝑇  ⊆  ( 𝑍 ‘ 𝑈 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							pj1f.p | 
							⊢ 𝑃  =  ( proj1 ‘ 𝐺 )  | 
						
						
							| 10 | 
							
								1 2 3 4 5 6 7 8 9
							 | 
							pj1ghm | 
							⊢ ( 𝜑  →  ( 𝑇 𝑃 𝑈 )  ∈  ( ( 𝐺  ↾s  ( 𝑇  ⊕  𝑈 ) )  GrpHom  𝐺 ) )  | 
						
						
							| 11 | 
							
								1 2 3 4 5 6 7 8 9
							 | 
							pj1f | 
							⊢ ( 𝜑  →  ( 𝑇 𝑃 𝑈 ) : ( 𝑇  ⊕  𝑈 ) ⟶ 𝑇 )  | 
						
						
							| 12 | 
							
								11
							 | 
							frnd | 
							⊢ ( 𝜑  →  ran  ( 𝑇 𝑃 𝑈 )  ⊆  𝑇 )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐺  ↾s  𝑇 )  =  ( 𝐺  ↾s  𝑇 )  | 
						
						
							| 14 | 
							
								13
							 | 
							resghm2b | 
							⊢ ( ( 𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  ran  ( 𝑇 𝑃 𝑈 )  ⊆  𝑇 )  →  ( ( 𝑇 𝑃 𝑈 )  ∈  ( ( 𝐺  ↾s  ( 𝑇  ⊕  𝑈 ) )  GrpHom  𝐺 )  ↔  ( 𝑇 𝑃 𝑈 )  ∈  ( ( 𝐺  ↾s  ( 𝑇  ⊕  𝑈 ) )  GrpHom  ( 𝐺  ↾s  𝑇 ) ) ) )  | 
						
						
							| 15 | 
							
								5 12 14
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( 𝑇 𝑃 𝑈 )  ∈  ( ( 𝐺  ↾s  ( 𝑇  ⊕  𝑈 ) )  GrpHom  𝐺 )  ↔  ( 𝑇 𝑃 𝑈 )  ∈  ( ( 𝐺  ↾s  ( 𝑇  ⊕  𝑈 ) )  GrpHom  ( 𝐺  ↾s  𝑇 ) ) ) )  | 
						
						
							| 16 | 
							
								10 15
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( 𝑇 𝑃 𝑈 )  ∈  ( ( 𝐺  ↾s  ( 𝑇  ⊕  𝑈 ) )  GrpHom  ( 𝐺  ↾s  𝑇 ) ) )  |