| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pj1eu.a |
⊢ + = ( +g ‘ 𝐺 ) |
| 2 |
|
pj1eu.s |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
| 3 |
|
pj1eu.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 4 |
|
pj1eu.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
| 5 |
|
pj1eu.2 |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 6 |
|
pj1eu.3 |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 7 |
|
pj1eu.4 |
⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) |
| 8 |
|
pj1eu.5 |
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) |
| 9 |
|
pj1f.p |
⊢ 𝑃 = ( proj1 ‘ 𝐺 ) |
| 10 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑇 ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 11 |
|
subgrcl |
⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 12 |
10 11
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑇 ) → 𝐺 ∈ Grp ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 14 |
13
|
subgss |
⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 15 |
5 14
|
syl |
⊢ ( 𝜑 → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 16 |
15
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑇 ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
| 17 |
13 1 3
|
grprid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑋 + 0 ) = 𝑋 ) |
| 18 |
12 16 17
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑇 ) → ( 𝑋 + 0 ) = 𝑋 ) |
| 19 |
18
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑇 ) → 𝑋 = ( 𝑋 + 0 ) ) |
| 20 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑇 ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 21 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑇 ) → ( 𝑇 ∩ 𝑈 ) = { 0 } ) |
| 22 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑇 ) → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) |
| 23 |
2
|
lsmub1 |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑇 ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 24 |
5 6 23
|
syl2anc |
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 25 |
24
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑇 ) → 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 26 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑇 ) → 𝑋 ∈ 𝑇 ) |
| 27 |
3
|
subg0cl |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ 𝑈 ) |
| 28 |
20 27
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑇 ) → 0 ∈ 𝑈 ) |
| 29 |
1 2 3 4 10 20 21 22 9 25 26 28
|
pj1eq |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑇 ) → ( 𝑋 = ( 𝑋 + 0 ) ↔ ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) = 𝑋 ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) = 0 ) ) ) |
| 30 |
19 29
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑇 ) → ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) = 𝑋 ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) = 0 ) ) |
| 31 |
30
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑇 ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) = 𝑋 ) |