Step |
Hyp |
Ref |
Expression |
1 |
|
pj1lmhm.l |
⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) |
2 |
|
pj1lmhm.s |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
3 |
|
pj1lmhm.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
4 |
|
pj1lmhm.p |
⊢ 𝑃 = ( proj1 ‘ 𝑊 ) |
5 |
|
pj1lmhm.1 |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
6 |
|
pj1lmhm.2 |
⊢ ( 𝜑 → 𝑇 ∈ 𝐿 ) |
7 |
|
pj1lmhm.3 |
⊢ ( 𝜑 → 𝑈 ∈ 𝐿 ) |
8 |
|
pj1lmhm.4 |
⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) |
9 |
1 2 3 4 5 6 7 8
|
pj1lmhm |
⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) LMHom 𝑊 ) ) |
10 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
11 |
|
eqid |
⊢ ( Cntz ‘ 𝑊 ) = ( Cntz ‘ 𝑊 ) |
12 |
1
|
lsssssubg |
⊢ ( 𝑊 ∈ LMod → 𝐿 ⊆ ( SubGrp ‘ 𝑊 ) ) |
13 |
5 12
|
syl |
⊢ ( 𝜑 → 𝐿 ⊆ ( SubGrp ‘ 𝑊 ) ) |
14 |
13 6
|
sseldd |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
15 |
13 7
|
sseldd |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
16 |
|
lmodabl |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) |
17 |
5 16
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Abel ) |
18 |
11 17 14 15
|
ablcntzd |
⊢ ( 𝜑 → 𝑇 ⊆ ( ( Cntz ‘ 𝑊 ) ‘ 𝑈 ) ) |
19 |
10 2 3 11 14 15 8 18 4
|
pj1f |
⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑇 ) |
20 |
19
|
frnd |
⊢ ( 𝜑 → ran ( 𝑇 𝑃 𝑈 ) ⊆ 𝑇 ) |
21 |
|
eqid |
⊢ ( 𝑊 ↾s 𝑇 ) = ( 𝑊 ↾s 𝑇 ) |
22 |
21 1
|
reslmhm2b |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝐿 ∧ ran ( 𝑇 𝑃 𝑈 ) ⊆ 𝑇 ) → ( ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) LMHom 𝑊 ) ↔ ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) LMHom ( 𝑊 ↾s 𝑇 ) ) ) ) |
23 |
5 6 20 22
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) LMHom 𝑊 ) ↔ ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) LMHom ( 𝑊 ↾s 𝑇 ) ) ) ) |
24 |
9 23
|
mpbid |
⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) LMHom ( 𝑊 ↾s 𝑇 ) ) ) |