Metamath Proof Explorer


Theorem pj1lmhm2

Description: The left projection function is a linear operator. (Contributed by Mario Carneiro, 15-Oct-2015) (Revised by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses pj1lmhm.l 𝐿 = ( LSubSp ‘ 𝑊 )
pj1lmhm.s = ( LSSum ‘ 𝑊 )
pj1lmhm.z 0 = ( 0g𝑊 )
pj1lmhm.p 𝑃 = ( proj1𝑊 )
pj1lmhm.1 ( 𝜑𝑊 ∈ LMod )
pj1lmhm.2 ( 𝜑𝑇𝐿 )
pj1lmhm.3 ( 𝜑𝑈𝐿 )
pj1lmhm.4 ( 𝜑 → ( 𝑇𝑈 ) = { 0 } )
Assertion pj1lmhm2 ( 𝜑 → ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊s ( 𝑇 𝑈 ) ) LMHom ( 𝑊s 𝑇 ) ) )

Proof

Step Hyp Ref Expression
1 pj1lmhm.l 𝐿 = ( LSubSp ‘ 𝑊 )
2 pj1lmhm.s = ( LSSum ‘ 𝑊 )
3 pj1lmhm.z 0 = ( 0g𝑊 )
4 pj1lmhm.p 𝑃 = ( proj1𝑊 )
5 pj1lmhm.1 ( 𝜑𝑊 ∈ LMod )
6 pj1lmhm.2 ( 𝜑𝑇𝐿 )
7 pj1lmhm.3 ( 𝜑𝑈𝐿 )
8 pj1lmhm.4 ( 𝜑 → ( 𝑇𝑈 ) = { 0 } )
9 1 2 3 4 5 6 7 8 pj1lmhm ( 𝜑 → ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊s ( 𝑇 𝑈 ) ) LMHom 𝑊 ) )
10 eqid ( +g𝑊 ) = ( +g𝑊 )
11 eqid ( Cntz ‘ 𝑊 ) = ( Cntz ‘ 𝑊 )
12 1 lsssssubg ( 𝑊 ∈ LMod → 𝐿 ⊆ ( SubGrp ‘ 𝑊 ) )
13 5 12 syl ( 𝜑𝐿 ⊆ ( SubGrp ‘ 𝑊 ) )
14 13 6 sseldd ( 𝜑𝑇 ∈ ( SubGrp ‘ 𝑊 ) )
15 13 7 sseldd ( 𝜑𝑈 ∈ ( SubGrp ‘ 𝑊 ) )
16 lmodabl ( 𝑊 ∈ LMod → 𝑊 ∈ Abel )
17 5 16 syl ( 𝜑𝑊 ∈ Abel )
18 11 17 14 15 ablcntzd ( 𝜑𝑇 ⊆ ( ( Cntz ‘ 𝑊 ) ‘ 𝑈 ) )
19 10 2 3 11 14 15 8 18 4 pj1f ( 𝜑 → ( 𝑇 𝑃 𝑈 ) : ( 𝑇 𝑈 ) ⟶ 𝑇 )
20 19 frnd ( 𝜑 → ran ( 𝑇 𝑃 𝑈 ) ⊆ 𝑇 )
21 eqid ( 𝑊s 𝑇 ) = ( 𝑊s 𝑇 )
22 21 1 reslmhm2b ( ( 𝑊 ∈ LMod ∧ 𝑇𝐿 ∧ ran ( 𝑇 𝑃 𝑈 ) ⊆ 𝑇 ) → ( ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊s ( 𝑇 𝑈 ) ) LMHom 𝑊 ) ↔ ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊s ( 𝑇 𝑈 ) ) LMHom ( 𝑊s 𝑇 ) ) ) )
23 5 6 20 22 syl3anc ( 𝜑 → ( ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊s ( 𝑇 𝑈 ) ) LMHom 𝑊 ) ↔ ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊s ( 𝑇 𝑈 ) ) LMHom ( 𝑊s 𝑇 ) ) ) )
24 9 23 mpbid ( 𝜑 → ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊s ( 𝑇 𝑈 ) ) LMHom ( 𝑊s 𝑇 ) ) )