| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pj1eu.a | 
							⊢  +   =  ( +g ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							pj1eu.s | 
							⊢  ⊕   =  ( LSSum ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							pj1eu.o | 
							⊢  0   =  ( 0g ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							pj1eu.z | 
							⊢ 𝑍  =  ( Cntz ‘ 𝐺 )  | 
						
						
							| 5 | 
							
								
							 | 
							pj1eu.2 | 
							⊢ ( 𝜑  →  𝑇  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							pj1eu.3 | 
							⊢ ( 𝜑  →  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							pj1eu.4 | 
							⊢ ( 𝜑  →  ( 𝑇  ∩  𝑈 )  =  {  0  } )  | 
						
						
							| 8 | 
							
								
							 | 
							pj1eu.5 | 
							⊢ ( 𝜑  →  𝑇  ⊆  ( 𝑍 ‘ 𝑈 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							pj1f.p | 
							⊢ 𝑃  =  ( proj1 ‘ 𝐺 )  | 
						
						
							| 10 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑈 )  →  𝑇  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							subgrcl | 
							⊢ ( 𝑇  ∈  ( SubGrp ‘ 𝐺 )  →  𝐺  ∈  Grp )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑈 )  →  𝐺  ∈  Grp )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 )  | 
						
						
							| 14 | 
							
								13
							 | 
							subgss | 
							⊢ ( 𝑈  ∈  ( SubGrp ‘ 𝐺 )  →  𝑈  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 15 | 
							
								6 14
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑈  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑈 )  →  𝑋  ∈  ( Base ‘ 𝐺 ) )  | 
						
						
							| 17 | 
							
								13 1 3
							 | 
							grplid | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  ( Base ‘ 𝐺 ) )  →  (  0   +  𝑋 )  =  𝑋 )  | 
						
						
							| 18 | 
							
								12 16 17
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑈 )  →  (  0   +  𝑋 )  =  𝑋 )  | 
						
						
							| 19 | 
							
								18
							 | 
							eqcomd | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑈 )  →  𝑋  =  (  0   +  𝑋 ) )  | 
						
						
							| 20 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑈 )  →  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 21 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑈 )  →  ( 𝑇  ∩  𝑈 )  =  {  0  } )  | 
						
						
							| 22 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑈 )  →  𝑇  ⊆  ( 𝑍 ‘ 𝑈 ) )  | 
						
						
							| 23 | 
							
								2
							 | 
							lsmub2 | 
							⊢ ( ( 𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  →  𝑈  ⊆  ( 𝑇  ⊕  𝑈 ) )  | 
						
						
							| 24 | 
							
								5 6 23
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  𝑈  ⊆  ( 𝑇  ⊕  𝑈 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑈 )  →  𝑋  ∈  ( 𝑇  ⊕  𝑈 ) )  | 
						
						
							| 26 | 
							
								3
							 | 
							subg0cl | 
							⊢ ( 𝑇  ∈  ( SubGrp ‘ 𝐺 )  →   0   ∈  𝑇 )  | 
						
						
							| 27 | 
							
								10 26
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑈 )  →   0   ∈  𝑇 )  | 
						
						
							| 28 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑈 )  →  𝑋  ∈  𝑈 )  | 
						
						
							| 29 | 
							
								1 2 3 4 10 20 21 22 9 25 27 28
							 | 
							pj1eq | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑈 )  →  ( 𝑋  =  (  0   +  𝑋 )  ↔  ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 )  =   0   ∧  ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 )  =  𝑋 ) ) )  | 
						
						
							| 30 | 
							
								19 29
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑈 )  →  ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 )  =   0   ∧  ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 )  =  𝑋 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							simpld | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑈 )  →  ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 )  =   0  )  |