Step |
Hyp |
Ref |
Expression |
1 |
|
pj1fval.v |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
pj1fval.a |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
pj1fval.s |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
4 |
|
pj1fval.p |
⊢ 𝑃 = ( proj1 ‘ 𝐺 ) |
5 |
1 2 3 4
|
pj1fval |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑇 𝑃 𝑈 ) = ( 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) ↦ ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ( 𝑇 𝑃 𝑈 ) = ( 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) ↦ ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) |
7 |
|
simpr |
⊢ ( ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ 𝑧 = 𝑋 ) → 𝑧 = 𝑋 ) |
8 |
7
|
eqeq1d |
⊢ ( ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ 𝑧 = 𝑋 ) → ( 𝑧 = ( 𝑥 + 𝑦 ) ↔ 𝑋 = ( 𝑥 + 𝑦 ) ) ) |
9 |
8
|
rexbidv |
⊢ ( ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ 𝑧 = 𝑋 ) → ( ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ↔ ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) ) |
10 |
9
|
riotabidv |
⊢ ( ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ 𝑧 = 𝑋 ) → ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) = ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) ) |
11 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) → 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) |
12 |
|
riotaex |
⊢ ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) ∈ V |
13 |
12
|
a1i |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) ∈ V ) |
14 |
6 10 11 13
|
fvmptd |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) = ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) ) |