Metamath Proof Explorer


Theorem pj2f

Description: The right projection function maps a direct subspace sum onto the right factor. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses pj1eu.a + = ( +g𝐺 )
pj1eu.s = ( LSSum ‘ 𝐺 )
pj1eu.o 0 = ( 0g𝐺 )
pj1eu.z 𝑍 = ( Cntz ‘ 𝐺 )
pj1eu.2 ( 𝜑𝑇 ∈ ( SubGrp ‘ 𝐺 ) )
pj1eu.3 ( 𝜑𝑈 ∈ ( SubGrp ‘ 𝐺 ) )
pj1eu.4 ( 𝜑 → ( 𝑇𝑈 ) = { 0 } )
pj1eu.5 ( 𝜑𝑇 ⊆ ( 𝑍𝑈 ) )
pj1f.p 𝑃 = ( proj1𝐺 )
Assertion pj2f ( 𝜑 → ( 𝑈 𝑃 𝑇 ) : ( 𝑇 𝑈 ) ⟶ 𝑈 )

Proof

Step Hyp Ref Expression
1 pj1eu.a + = ( +g𝐺 )
2 pj1eu.s = ( LSSum ‘ 𝐺 )
3 pj1eu.o 0 = ( 0g𝐺 )
4 pj1eu.z 𝑍 = ( Cntz ‘ 𝐺 )
5 pj1eu.2 ( 𝜑𝑇 ∈ ( SubGrp ‘ 𝐺 ) )
6 pj1eu.3 ( 𝜑𝑈 ∈ ( SubGrp ‘ 𝐺 ) )
7 pj1eu.4 ( 𝜑 → ( 𝑇𝑈 ) = { 0 } )
8 pj1eu.5 ( 𝜑𝑇 ⊆ ( 𝑍𝑈 ) )
9 pj1f.p 𝑃 = ( proj1𝐺 )
10 incom ( 𝑈𝑇 ) = ( 𝑇𝑈 )
11 10 7 eqtrid ( 𝜑 → ( 𝑈𝑇 ) = { 0 } )
12 4 5 6 8 cntzrecd ( 𝜑𝑈 ⊆ ( 𝑍𝑇 ) )
13 1 2 3 4 6 5 11 12 9 pj1f ( 𝜑 → ( 𝑈 𝑃 𝑇 ) : ( 𝑈 𝑇 ) ⟶ 𝑈 )
14 2 4 lsmcom2 ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍𝑈 ) ) → ( 𝑇 𝑈 ) = ( 𝑈 𝑇 ) )
15 5 6 8 14 syl3anc ( 𝜑 → ( 𝑇 𝑈 ) = ( 𝑈 𝑇 ) )
16 15 feq2d ( 𝜑 → ( ( 𝑈 𝑃 𝑇 ) : ( 𝑇 𝑈 ) ⟶ 𝑈 ↔ ( 𝑈 𝑃 𝑇 ) : ( 𝑈 𝑇 ) ⟶ 𝑈 ) )
17 13 16 mpbird ( 𝜑 → ( 𝑈 𝑃 𝑇 ) : ( 𝑇 𝑈 ) ⟶ 𝑈 )