Step |
Hyp |
Ref |
Expression |
1 |
|
pj1eu.a |
⊢ + = ( +g ‘ 𝐺 ) |
2 |
|
pj1eu.s |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
3 |
|
pj1eu.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
4 |
|
pj1eu.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
5 |
|
pj1eu.2 |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
6 |
|
pj1eu.3 |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
7 |
|
pj1eu.4 |
⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) |
8 |
|
pj1eu.5 |
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) |
9 |
|
pj1f.p |
⊢ 𝑃 = ( proj1 ‘ 𝐺 ) |
10 |
|
incom |
⊢ ( 𝑈 ∩ 𝑇 ) = ( 𝑇 ∩ 𝑈 ) |
11 |
10 7
|
eqtrid |
⊢ ( 𝜑 → ( 𝑈 ∩ 𝑇 ) = { 0 } ) |
12 |
4 5 6 8
|
cntzrecd |
⊢ ( 𝜑 → 𝑈 ⊆ ( 𝑍 ‘ 𝑇 ) ) |
13 |
1 2 3 4 6 5 11 12 9
|
pj1f |
⊢ ( 𝜑 → ( 𝑈 𝑃 𝑇 ) : ( 𝑈 ⊕ 𝑇 ) ⟶ 𝑈 ) |
14 |
2 4
|
lsmcom2 |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑇 ⊕ 𝑈 ) = ( 𝑈 ⊕ 𝑇 ) ) |
15 |
5 6 8 14
|
syl3anc |
⊢ ( 𝜑 → ( 𝑇 ⊕ 𝑈 ) = ( 𝑈 ⊕ 𝑇 ) ) |
16 |
15
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑈 𝑃 𝑇 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑈 ↔ ( 𝑈 𝑃 𝑇 ) : ( 𝑈 ⊕ 𝑇 ) ⟶ 𝑈 ) ) |
17 |
13 16
|
mpbird |
⊢ ( 𝜑 → ( 𝑈 𝑃 𝑇 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑈 ) |