| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjidm.1 |
⊢ 𝐻 ∈ Cℋ |
| 2 |
|
pjidm.2 |
⊢ 𝐴 ∈ ℋ |
| 3 |
|
pjadj.3 |
⊢ 𝐵 ∈ ℋ |
| 4 |
1 2
|
pjpji |
⊢ 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) |
| 5 |
1 3
|
pjpji |
⊢ 𝐵 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) |
| 6 |
4 5
|
oveq12i |
⊢ ( 𝐴 +ℎ 𝐵 ) = ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) +ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) |
| 7 |
1 2
|
pjhclii |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ |
| 8 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
| 9 |
8 2
|
pjhclii |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ |
| 10 |
1 3
|
pjhclii |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ∈ ℋ |
| 11 |
8 3
|
pjhclii |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ∈ ℋ |
| 12 |
7 9 10 11
|
hvadd4i |
⊢ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) +ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) = ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) +ℎ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) |
| 13 |
6 12
|
eqtri |
⊢ ( 𝐴 +ℎ 𝐵 ) = ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) +ℎ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) |
| 14 |
13
|
fveq2i |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) +ℎ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) ) |
| 15 |
1
|
chshii |
⊢ 𝐻 ∈ Sℋ |
| 16 |
1 2
|
pjclii |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 |
| 17 |
1 3
|
pjclii |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ∈ 𝐻 |
| 18 |
|
shaddcl |
⊢ ( ( 𝐻 ∈ Sℋ ∧ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 ∧ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ∈ 𝐻 ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ∈ 𝐻 ) |
| 19 |
15 16 17 18
|
mp3an |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ∈ 𝐻 |
| 20 |
8
|
chshii |
⊢ ( ⊥ ‘ 𝐻 ) ∈ Sℋ |
| 21 |
8 2
|
pjclii |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) |
| 22 |
8 3
|
pjclii |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ∈ ( ⊥ ‘ 𝐻 ) |
| 23 |
|
shaddcl |
⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Sℋ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) |
| 24 |
20 21 22 23
|
mp3an |
⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ∈ ( ⊥ ‘ 𝐻 ) |
| 25 |
1
|
pjcompi |
⊢ ( ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ∈ 𝐻 ∧ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( projℎ ‘ 𝐻 ) ‘ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) +ℎ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) |
| 26 |
19 24 25
|
mp2an |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) +ℎ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) |
| 27 |
14 26
|
eqtri |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) |