Metamath Proof Explorer


Theorem pjadji

Description: A projection is self-adjoint. Property (i) of Beran p. 109. (Contributed by NM, 6-Oct-2000) (New usage is discouraged.)

Ref Expression
Hypothesis pjadjt.1 𝐻C
Assertion pjadji ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( proj𝐻 ) ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 pjadjt.1 𝐻C
2 fveq2 ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ( proj𝐻 ) ‘ 𝐴 ) = ( ( proj𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) )
3 2 oveq1d ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih 𝐵 ) = ( ( ( proj𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ·ih 𝐵 ) )
4 oveq1 ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( 𝐴 ·ih ( ( proj𝐻 ) ‘ 𝐵 ) ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ·ih ( ( proj𝐻 ) ‘ 𝐵 ) ) )
5 3 4 eqeq12d ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( proj𝐻 ) ‘ 𝐵 ) ) ↔ ( ( ( proj𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ·ih 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ·ih ( ( proj𝐻 ) ‘ 𝐵 ) ) ) )
6 oveq2 ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) → ( ( ( proj𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ·ih 𝐵 ) = ( ( ( proj𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) ) )
7 fveq2 ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) → ( ( proj𝐻 ) ‘ 𝐵 ) = ( ( proj𝐻 ) ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) ) )
8 7 oveq2d ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ·ih ( ( proj𝐻 ) ‘ 𝐵 ) ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ·ih ( ( proj𝐻 ) ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) ) ) )
9 6 8 eqeq12d ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) → ( ( ( ( proj𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ·ih 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ·ih ( ( proj𝐻 ) ‘ 𝐵 ) ) ↔ ( ( ( proj𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ·ih ( ( proj𝐻 ) ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) ) ) ) )
10 ifhvhv0 if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ∈ ℋ
11 ifhvhv0 if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) ∈ ℋ
12 1 10 11 pjadjii ( ( ( proj𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ·ih ( ( proj𝐻 ) ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0 ) ) )
13 5 9 12 dedth2h ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( proj𝐻 ) ‘ 𝐵 ) ) )