| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjidm.1 | ⊢ 𝐻  ∈   Cℋ | 
						
							| 2 |  | pjidm.2 | ⊢ 𝐴  ∈   ℋ | 
						
							| 3 |  | pjadj.3 | ⊢ 𝐵  ∈   ℋ | 
						
							| 4 | 3 2 | pjorthi | ⊢ ( 𝐻  ∈   Cℋ   →  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 )  ·ih  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) )  =  0 ) | 
						
							| 5 | 1 4 | ax-mp | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 )  ·ih  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) )  =  0 | 
						
							| 6 | 5 | fveq2i | ⊢ ( ∗ ‘ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 )  ·ih  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) )  =  ( ∗ ‘ 0 ) | 
						
							| 7 |  | cj0 | ⊢ ( ∗ ‘ 0 )  =  0 | 
						
							| 8 | 6 7 | eqtri | ⊢ ( ∗ ‘ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 )  ·ih  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) )  =  0 | 
						
							| 9 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐻 )  ∈   Cℋ | 
						
							| 10 | 9 2 | pjhclii | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  ∈   ℋ | 
						
							| 11 | 1 3 | pjhclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 )  ∈   ℋ | 
						
							| 12 | 10 11 | his1i | ⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  ·ih  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) )  =  ( ∗ ‘ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 )  ·ih  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) | 
						
							| 13 | 2 3 | pjorthi | ⊢ ( 𝐻  ∈   Cℋ   →  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) )  =  0 ) | 
						
							| 14 | 1 13 | ax-mp | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) )  =  0 | 
						
							| 15 | 8 12 14 | 3eqtr4ri | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) )  =  ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  ·ih  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) | 
						
							| 16 | 15 | oveq2i | ⊢ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) )  +  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) )  =  ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) )  +  ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  ·ih  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) | 
						
							| 17 | 1 2 | pjhclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ∈   ℋ | 
						
							| 18 | 9 3 | pjhclii | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 )  ∈   ℋ | 
						
							| 19 |  | his7 | ⊢ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ∈   ℋ  ∧  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 )  ∈   ℋ  ∧  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 )  ∈   ℋ )  →  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 )  +ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) )  =  ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) )  +  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) ) | 
						
							| 20 | 17 11 18 19 | mp3an | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 )  +ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) )  =  ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) )  +  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) | 
						
							| 21 |  | ax-his2 | ⊢ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ∈   ℋ  ∧  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  ∈   ℋ  ∧  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 )  ∈   ℋ )  →  ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  +ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) )  ·ih  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) )  =  ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) )  +  ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  ·ih  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) ) | 
						
							| 22 | 17 10 11 21 | mp3an | ⊢ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  +ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) )  ·ih  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) )  =  ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) )  +  ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  ·ih  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) | 
						
							| 23 | 16 20 22 | 3eqtr4i | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 )  +ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) )  =  ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  +ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) )  ·ih  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) | 
						
							| 24 | 1 3 | pjpji | ⊢ 𝐵  =  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 )  +ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) | 
						
							| 25 | 24 | oveq2i | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  𝐵 )  =  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 )  +ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) | 
						
							| 26 | 1 2 | pjpji | ⊢ 𝐴  =  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  +ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) | 
						
							| 27 | 26 | oveq1i | ⊢ ( 𝐴  ·ih  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) )  =  ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  +ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) )  ·ih  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) | 
						
							| 28 | 23 25 27 | 3eqtr4i | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  𝐵 )  =  ( 𝐴  ·ih  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) |