Metamath Proof Explorer


Theorem pjch1

Description: Property of identity projection. Remark in Beran p. 111. (Contributed by NM, 28-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion pjch1 ( 𝐴 ∈ ℋ → ( ( proj ‘ ℋ ) ‘ 𝐴 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 eleq1 ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( 𝐴 ∈ ℋ ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ∈ ℋ ) )
2 fveq2 ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ( proj ‘ ℋ ) ‘ 𝐴 ) = ( ( proj ‘ ℋ ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) )
3 id ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) )
4 2 3 eqeq12d ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ( ( proj ‘ ℋ ) ‘ 𝐴 ) = 𝐴 ↔ ( ( proj ‘ ℋ ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) )
5 1 4 bibi12d ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ( 𝐴 ∈ ℋ ↔ ( ( proj ‘ ℋ ) ‘ 𝐴 ) = 𝐴 ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ∈ ℋ ↔ ( ( proj ‘ ℋ ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) )
6 helch ℋ ∈ C
7 ifhvhv0 if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ∈ ℋ
8 6 7 pjchi ( if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ∈ ℋ ↔ ( ( proj ‘ ℋ ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) )
9 5 8 dedth ( 𝐴 ∈ ℋ → ( 𝐴 ∈ ℋ ↔ ( ( proj ‘ ℋ ) ‘ 𝐴 ) = 𝐴 ) )
10 9 ibi ( 𝐴 ∈ ℋ → ( ( proj ‘ ℋ ) ‘ 𝐴 ) = 𝐴 )