Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 ∈ ℋ ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ ) ) |
2 |
|
fveq2 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) = ( ( projℎ ‘ ℋ ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) |
3 |
|
id |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) |
4 |
2 3
|
eqeq12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) = 𝐴 ↔ ( ( projℎ ‘ ℋ ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) |
5 |
1 4
|
bibi12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝐴 ∈ ℋ ↔ ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) = 𝐴 ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ ↔ ( ( projℎ ‘ ℋ ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
6 |
|
helch |
⊢ ℋ ∈ Cℋ |
7 |
|
ifhvhv0 |
⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ |
8 |
6 7
|
pjchi |
⊢ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ ↔ ( ( projℎ ‘ ℋ ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) |
9 |
5 8
|
dedth |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ∈ ℋ ↔ ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) = 𝐴 ) ) |
10 |
9
|
ibi |
⊢ ( 𝐴 ∈ ℋ → ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) = 𝐴 ) |