| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjidm.1 | ⊢ 𝐻  ∈   Cℋ | 
						
							| 2 |  | pjidm.2 | ⊢ 𝐴  ∈   ℋ | 
						
							| 3 |  | pjsslem.1 | ⊢ 𝐺  ∈   Cℋ | 
						
							| 4 | 3 | choccli | ⊢ ( ⊥ ‘ 𝐺 )  ∈   Cℋ | 
						
							| 5 | 1 2 4 | pjssmii | ⊢ ( 𝐻  ⊆  ( ⊥ ‘ 𝐺 )  →  ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) )  =  ( ( projℎ ‘ ( ( ⊥ ‘ 𝐺 )  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ) | 
						
							| 6 | 5 | oveq2d | ⊢ ( 𝐻  ⊆  ( ⊥ ‘ 𝐺 )  →  ( 𝐴  −ℎ  ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) )  =  ( 𝐴  −ℎ  ( ( projℎ ‘ ( ( ⊥ ‘ 𝐺 )  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ) ) | 
						
							| 7 | 3 2 | pjpoi | ⊢ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  =  ( 𝐴  −ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) | 
						
							| 8 | 7 | oveq2i | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  +ℎ  ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) )  =  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  +ℎ  ( 𝐴  −ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ) | 
						
							| 9 | 4 2 | pjhclii | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 )  ∈   ℋ | 
						
							| 10 | 1 2 | pjhclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ∈   ℋ | 
						
							| 11 | 9 10 | hvnegdii | ⊢ ( - 1  ·ℎ  ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) )  =  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) | 
						
							| 12 | 11 | oveq2i | ⊢ ( 𝐴  +ℎ  ( - 1  ·ℎ  ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) )  =  ( 𝐴  +ℎ  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ) | 
						
							| 13 |  | hvaddsub12 | ⊢ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ∈   ℋ  ∧  𝐴  ∈   ℋ  ∧  ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 )  ∈   ℋ )  →  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  +ℎ  ( 𝐴  −ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) )  =  ( 𝐴  +ℎ  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ) ) | 
						
							| 14 | 10 2 9 13 | mp3an | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  +ℎ  ( 𝐴  −ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) )  =  ( 𝐴  +ℎ  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ) | 
						
							| 15 | 12 14 | eqtr4i | ⊢ ( 𝐴  +ℎ  ( - 1  ·ℎ  ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) )  =  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  +ℎ  ( 𝐴  −ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ) | 
						
							| 16 | 8 15 | eqtr4i | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  +ℎ  ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) )  =  ( 𝐴  +ℎ  ( - 1  ·ℎ  ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) | 
						
							| 17 | 9 10 | hvsubcli | ⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) )  ∈   ℋ | 
						
							| 18 | 2 17 | hvsubvali | ⊢ ( 𝐴  −ℎ  ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) )  =  ( 𝐴  +ℎ  ( - 1  ·ℎ  ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) | 
						
							| 19 | 16 18 | eqtr4i | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  +ℎ  ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) )  =  ( 𝐴  −ℎ  ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) | 
						
							| 20 | 1 3 | chjcomi | ⊢ ( 𝐻  ∨ℋ  𝐺 )  =  ( 𝐺  ∨ℋ  𝐻 ) | 
						
							| 21 | 3 1 | chdmm4i | ⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 )  ∩  ( ⊥ ‘ 𝐻 ) ) )  =  ( 𝐺  ∨ℋ  𝐻 ) | 
						
							| 22 | 20 21 | eqtr4i | ⊢ ( 𝐻  ∨ℋ  𝐺 )  =  ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 )  ∩  ( ⊥ ‘ 𝐻 ) ) ) | 
						
							| 23 | 22 | fveq2i | ⊢ ( projℎ ‘ ( 𝐻  ∨ℋ  𝐺 ) )  =  ( projℎ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 )  ∩  ( ⊥ ‘ 𝐻 ) ) ) ) | 
						
							| 24 | 23 | fveq1i | ⊢ ( ( projℎ ‘ ( 𝐻  ∨ℋ  𝐺 ) ) ‘ 𝐴 )  =  ( ( projℎ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 )  ∩  ( ⊥ ‘ 𝐻 ) ) ) ) ‘ 𝐴 ) | 
						
							| 25 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐻 )  ∈   Cℋ | 
						
							| 26 | 4 25 | chincli | ⊢ ( ( ⊥ ‘ 𝐺 )  ∩  ( ⊥ ‘ 𝐻 ) )  ∈   Cℋ | 
						
							| 27 | 26 2 | pjopi | ⊢ ( ( projℎ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝐺 )  ∩  ( ⊥ ‘ 𝐻 ) ) ) ) ‘ 𝐴 )  =  ( 𝐴  −ℎ  ( ( projℎ ‘ ( ( ⊥ ‘ 𝐺 )  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ) | 
						
							| 28 | 24 27 | eqtri | ⊢ ( ( projℎ ‘ ( 𝐻  ∨ℋ  𝐺 ) ) ‘ 𝐴 )  =  ( 𝐴  −ℎ  ( ( projℎ ‘ ( ( ⊥ ‘ 𝐺 )  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ) | 
						
							| 29 | 6 19 28 | 3eqtr4g | ⊢ ( 𝐻  ⊆  ( ⊥ ‘ 𝐺 )  →  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  +ℎ  ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) )  =  ( ( projℎ ‘ ( 𝐻  ∨ℋ  𝐺 ) ) ‘ 𝐴 ) ) | 
						
							| 30 | 29 | eqcomd | ⊢ ( 𝐻  ⊆  ( ⊥ ‘ 𝐺 )  →  ( ( projℎ ‘ ( 𝐻  ∨ℋ  𝐺 ) ) ‘ 𝐴 )  =  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  +ℎ  ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) |