Step |
Hyp |
Ref |
Expression |
1 |
|
pjidm.1 |
⊢ 𝐻 ∈ Cℋ |
2 |
1
|
cheli |
⊢ ( 𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ ) |
3 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
4 |
3
|
cheli |
⊢ ( 𝐵 ∈ ( ⊥ ‘ 𝐻 ) → 𝐵 ∈ ℋ ) |
5 |
|
hvaddcl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ) |
6 |
2 4 5
|
syl2an |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ) |
7 |
|
axpjpj |
⊢ ( ( 𝐻 ∈ Cℋ ∧ ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ) → ( 𝐴 +ℎ 𝐵 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ) ) |
8 |
1 6 7
|
sylancr |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( 𝐴 +ℎ 𝐵 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ) ) |
9 |
|
eqid |
⊢ ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 +ℎ 𝐵 ) |
10 |
|
axpjcl |
⊢ ( ( 𝐻 ∈ Cℋ ∧ ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ∈ 𝐻 ) |
11 |
1 6 10
|
sylancr |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ∈ 𝐻 ) |
12 |
|
axpjcl |
⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Cℋ ∧ ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) |
13 |
3 6 12
|
sylancr |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) |
14 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → 𝐴 ∈ 𝐻 ) |
15 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) |
16 |
1
|
chocunii |
⊢ ( ( ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ∈ 𝐻 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( ( ( 𝐴 +ℎ 𝐵 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ) ∧ ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 +ℎ 𝐵 ) ) → ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐴 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐵 ) ) ) |
17 |
11 13 14 15 16
|
syl22anc |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( ( 𝐴 +ℎ 𝐵 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ) ∧ ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 +ℎ 𝐵 ) ) → ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐴 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐵 ) ) ) |
18 |
9 17
|
mpan2i |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( 𝐴 +ℎ 𝐵 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ) → ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐴 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐵 ) ) ) |
19 |
8 18
|
mpd |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐴 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐵 ) ) |
20 |
19
|
simpld |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐴 ) |