| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjidm.1 |
⊢ 𝐻 ∈ Cℋ |
| 2 |
1
|
cheli |
⊢ ( 𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ ) |
| 3 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
| 4 |
3
|
cheli |
⊢ ( 𝐵 ∈ ( ⊥ ‘ 𝐻 ) → 𝐵 ∈ ℋ ) |
| 5 |
|
hvaddcl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ) |
| 6 |
2 4 5
|
syl2an |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ) |
| 7 |
|
axpjpj |
⊢ ( ( 𝐻 ∈ Cℋ ∧ ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ) → ( 𝐴 +ℎ 𝐵 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ) ) |
| 8 |
1 6 7
|
sylancr |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( 𝐴 +ℎ 𝐵 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ) ) |
| 9 |
|
eqid |
⊢ ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 +ℎ 𝐵 ) |
| 10 |
|
axpjcl |
⊢ ( ( 𝐻 ∈ Cℋ ∧ ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ∈ 𝐻 ) |
| 11 |
1 6 10
|
sylancr |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ∈ 𝐻 ) |
| 12 |
|
axpjcl |
⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Cℋ ∧ ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) |
| 13 |
3 6 12
|
sylancr |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) |
| 14 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → 𝐴 ∈ 𝐻 ) |
| 15 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) |
| 16 |
1
|
chocunii |
⊢ ( ( ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ∈ 𝐻 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) ∧ ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) ) → ( ( ( 𝐴 +ℎ 𝐵 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ) ∧ ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 +ℎ 𝐵 ) ) → ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐴 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐵 ) ) ) |
| 17 |
11 13 14 15 16
|
syl22anc |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( ( 𝐴 +ℎ 𝐵 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ) ∧ ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 +ℎ 𝐵 ) ) → ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐴 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐵 ) ) ) |
| 18 |
9 17
|
mpan2i |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( 𝐴 +ℎ 𝐵 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) ) → ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐴 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐵 ) ) ) |
| 19 |
8 18
|
mpd |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐴 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐵 ) ) |
| 20 |
19
|
simpld |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = 𝐴 ) |