Metamath Proof Explorer


Theorem pjds3i

Description: Vector decomposition into sum of projections on orthogonal subspaces. (Contributed by NM, 22-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses pjds3.1 𝐹C
pjds3.2 𝐺C
pjds3.3 𝐻C
Assertion pjds3i ( ( ( 𝐴 ∈ ( ( 𝐹 𝐺 ) ∨ 𝐻 ) ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) ∧ ( 𝐹 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) ) → 𝐴 = ( ( ( ( proj𝐹 ) ‘ 𝐴 ) + ( ( proj𝐺 ) ‘ 𝐴 ) ) + ( ( proj𝐻 ) ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 pjds3.1 𝐹C
2 pjds3.2 𝐺C
3 pjds3.3 𝐻C
4 simpl ( ( 𝐴 ∈ ( ( 𝐹 𝐺 ) ∨ 𝐻 ) ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) → 𝐴 ∈ ( ( 𝐹 𝐺 ) ∨ 𝐻 ) )
5 3 choccli ( ⊥ ‘ 𝐻 ) ∈ C
6 1 2 5 chlubii ( ( 𝐹 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) → ( 𝐹 𝐺 ) ⊆ ( ⊥ ‘ 𝐻 ) )
7 1 2 chjcli ( 𝐹 𝐺 ) ∈ C
8 7 3 pjdsi ( ( 𝐴 ∈ ( ( 𝐹 𝐺 ) ∨ 𝐻 ) ∧ ( 𝐹 𝐺 ) ⊆ ( ⊥ ‘ 𝐻 ) ) → 𝐴 = ( ( ( proj ‘ ( 𝐹 𝐺 ) ) ‘ 𝐴 ) + ( ( proj𝐻 ) ‘ 𝐴 ) ) )
9 4 6 8 syl2an ( ( ( 𝐴 ∈ ( ( 𝐹 𝐺 ) ∨ 𝐻 ) ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) ∧ ( 𝐹 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) ) → 𝐴 = ( ( ( proj ‘ ( 𝐹 𝐺 ) ) ‘ 𝐴 ) + ( ( proj𝐻 ) ‘ 𝐴 ) ) )
10 1 2 osumi ( 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) → ( 𝐹 + 𝐺 ) = ( 𝐹 𝐺 ) )
11 10 fveq2d ( 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) → ( proj ‘ ( 𝐹 + 𝐺 ) ) = ( proj ‘ ( 𝐹 𝐺 ) ) )
12 11 fveq1d ( 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) → ( ( proj ‘ ( 𝐹 + 𝐺 ) ) ‘ 𝐴 ) = ( ( proj ‘ ( 𝐹 𝐺 ) ) ‘ 𝐴 ) )
13 12 oveq1d ( 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) → ( ( ( proj ‘ ( 𝐹 + 𝐺 ) ) ‘ 𝐴 ) + ( ( proj𝐻 ) ‘ 𝐴 ) ) = ( ( ( proj ‘ ( 𝐹 𝐺 ) ) ‘ 𝐴 ) + ( ( proj𝐻 ) ‘ 𝐴 ) ) )
14 13 ad2antlr ( ( ( 𝐴 ∈ ( ( 𝐹 𝐺 ) ∨ 𝐻 ) ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) ∧ ( 𝐹 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) ) → ( ( ( proj ‘ ( 𝐹 + 𝐺 ) ) ‘ 𝐴 ) + ( ( proj𝐻 ) ‘ 𝐴 ) ) = ( ( ( proj ‘ ( 𝐹 𝐺 ) ) ‘ 𝐴 ) + ( ( proj𝐻 ) ‘ 𝐴 ) ) )
15 7 3 chjcli ( ( 𝐹 𝐺 ) ∨ 𝐻 ) ∈ C
16 15 cheli ( 𝐴 ∈ ( ( 𝐹 𝐺 ) ∨ 𝐻 ) → 𝐴 ∈ ℋ )
17 1 2 pjsumi ( 𝐴 ∈ ℋ → ( 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) → ( ( proj ‘ ( 𝐹 + 𝐺 ) ) ‘ 𝐴 ) = ( ( ( proj𝐹 ) ‘ 𝐴 ) + ( ( proj𝐺 ) ‘ 𝐴 ) ) ) )
18 17 imp ( ( 𝐴 ∈ ℋ ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) → ( ( proj ‘ ( 𝐹 + 𝐺 ) ) ‘ 𝐴 ) = ( ( ( proj𝐹 ) ‘ 𝐴 ) + ( ( proj𝐺 ) ‘ 𝐴 ) ) )
19 16 18 sylan ( ( 𝐴 ∈ ( ( 𝐹 𝐺 ) ∨ 𝐻 ) ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) → ( ( proj ‘ ( 𝐹 + 𝐺 ) ) ‘ 𝐴 ) = ( ( ( proj𝐹 ) ‘ 𝐴 ) + ( ( proj𝐺 ) ‘ 𝐴 ) ) )
20 19 oveq1d ( ( 𝐴 ∈ ( ( 𝐹 𝐺 ) ∨ 𝐻 ) ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) → ( ( ( proj ‘ ( 𝐹 + 𝐺 ) ) ‘ 𝐴 ) + ( ( proj𝐻 ) ‘ 𝐴 ) ) = ( ( ( ( proj𝐹 ) ‘ 𝐴 ) + ( ( proj𝐺 ) ‘ 𝐴 ) ) + ( ( proj𝐻 ) ‘ 𝐴 ) ) )
21 20 adantr ( ( ( 𝐴 ∈ ( ( 𝐹 𝐺 ) ∨ 𝐻 ) ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) ∧ ( 𝐹 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) ) → ( ( ( proj ‘ ( 𝐹 + 𝐺 ) ) ‘ 𝐴 ) + ( ( proj𝐻 ) ‘ 𝐴 ) ) = ( ( ( ( proj𝐹 ) ‘ 𝐴 ) + ( ( proj𝐺 ) ‘ 𝐴 ) ) + ( ( proj𝐻 ) ‘ 𝐴 ) ) )
22 9 14 21 3eqtr2d ( ( ( 𝐴 ∈ ( ( 𝐹 𝐺 ) ∨ 𝐻 ) ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) ∧ ( 𝐹 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) ) → 𝐴 = ( ( ( ( proj𝐹 ) ‘ 𝐴 ) + ( ( proj𝐺 ) ‘ 𝐴 ) ) + ( ( proj𝐻 ) ‘ 𝐴 ) ) )