Step |
Hyp |
Ref |
Expression |
1 |
|
pjds3.1 |
⊢ 𝐹 ∈ Cℋ |
2 |
|
pjds3.2 |
⊢ 𝐺 ∈ Cℋ |
3 |
|
pjds3.3 |
⊢ 𝐻 ∈ Cℋ |
4 |
|
simpl |
⊢ ( ( 𝐴 ∈ ( ( 𝐹 ∨ℋ 𝐺 ) ∨ℋ 𝐻 ) ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) → 𝐴 ∈ ( ( 𝐹 ∨ℋ 𝐺 ) ∨ℋ 𝐻 ) ) |
5 |
3
|
choccli |
⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
6 |
1 2 5
|
chlubii |
⊢ ( ( 𝐹 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) → ( 𝐹 ∨ℋ 𝐺 ) ⊆ ( ⊥ ‘ 𝐻 ) ) |
7 |
1 2
|
chjcli |
⊢ ( 𝐹 ∨ℋ 𝐺 ) ∈ Cℋ |
8 |
7 3
|
pjdsi |
⊢ ( ( 𝐴 ∈ ( ( 𝐹 ∨ℋ 𝐺 ) ∨ℋ 𝐻 ) ∧ ( 𝐹 ∨ℋ 𝐺 ) ⊆ ( ⊥ ‘ 𝐻 ) ) → 𝐴 = ( ( ( projℎ ‘ ( 𝐹 ∨ℋ 𝐺 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
9 |
4 6 8
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ( ( 𝐹 ∨ℋ 𝐺 ) ∨ℋ 𝐻 ) ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) ∧ ( 𝐹 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) ) → 𝐴 = ( ( ( projℎ ‘ ( 𝐹 ∨ℋ 𝐺 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
10 |
1 2
|
osumi |
⊢ ( 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) → ( 𝐹 +ℋ 𝐺 ) = ( 𝐹 ∨ℋ 𝐺 ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) → ( projℎ ‘ ( 𝐹 +ℋ 𝐺 ) ) = ( projℎ ‘ ( 𝐹 ∨ℋ 𝐺 ) ) ) |
12 |
11
|
fveq1d |
⊢ ( 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) → ( ( projℎ ‘ ( 𝐹 +ℋ 𝐺 ) ) ‘ 𝐴 ) = ( ( projℎ ‘ ( 𝐹 ∨ℋ 𝐺 ) ) ‘ 𝐴 ) ) |
13 |
12
|
oveq1d |
⊢ ( 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) → ( ( ( projℎ ‘ ( 𝐹 +ℋ 𝐺 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( ( projℎ ‘ ( 𝐹 ∨ℋ 𝐺 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
14 |
13
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ( ( 𝐹 ∨ℋ 𝐺 ) ∨ℋ 𝐻 ) ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) ∧ ( 𝐹 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) ) → ( ( ( projℎ ‘ ( 𝐹 +ℋ 𝐺 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( ( projℎ ‘ ( 𝐹 ∨ℋ 𝐺 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
15 |
7 3
|
chjcli |
⊢ ( ( 𝐹 ∨ℋ 𝐺 ) ∨ℋ 𝐻 ) ∈ Cℋ |
16 |
15
|
cheli |
⊢ ( 𝐴 ∈ ( ( 𝐹 ∨ℋ 𝐺 ) ∨ℋ 𝐻 ) → 𝐴 ∈ ℋ ) |
17 |
1 2
|
pjsumi |
⊢ ( 𝐴 ∈ ℋ → ( 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) → ( ( projℎ ‘ ( 𝐹 +ℋ 𝐺 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ 𝐹 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) ) |
18 |
17
|
imp |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) → ( ( projℎ ‘ ( 𝐹 +ℋ 𝐺 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ 𝐹 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
19 |
16 18
|
sylan |
⊢ ( ( 𝐴 ∈ ( ( 𝐹 ∨ℋ 𝐺 ) ∨ℋ 𝐻 ) ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) → ( ( projℎ ‘ ( 𝐹 +ℋ 𝐺 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ 𝐹 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
20 |
19
|
oveq1d |
⊢ ( ( 𝐴 ∈ ( ( 𝐹 ∨ℋ 𝐺 ) ∨ℋ 𝐻 ) ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) → ( ( ( projℎ ‘ ( 𝐹 +ℋ 𝐺 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( ( ( projℎ ‘ 𝐹 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( ( 𝐹 ∨ℋ 𝐺 ) ∨ℋ 𝐻 ) ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) ∧ ( 𝐹 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) ) → ( ( ( projℎ ‘ ( 𝐹 +ℋ 𝐺 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( ( ( projℎ ‘ 𝐹 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
22 |
9 14 21
|
3eqtr2d |
⊢ ( ( ( 𝐴 ∈ ( ( 𝐹 ∨ℋ 𝐺 ) ∨ℋ 𝐻 ) ∧ 𝐹 ⊆ ( ⊥ ‘ 𝐺 ) ) ∧ ( 𝐹 ⊆ ( ⊥ ‘ 𝐻 ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) ) → 𝐴 = ( ( ( ( projℎ ‘ 𝐹 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |