Description: Equality with a projection. (Contributed by NM, 20-Jan-2007) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjeq | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝐵 ↔ ( 𝐵 ∈ 𝐻 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝐵 +ℎ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjhth | ⊢ ( 𝐻 ∈ Cℋ → ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) = ℋ ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝐻 ∈ Cℋ → ( 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ↔ 𝐴 ∈ ℋ ) ) |
| 3 | 2 | biimpar | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) |
| 4 | pjpreeq | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝐵 ↔ ( 𝐵 ∈ 𝐻 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝐵 +ℎ 𝑥 ) ) ) ) | |
| 5 | 3 4 | syldan | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝐵 ↔ ( 𝐵 ∈ 𝐻 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝐵 +ℎ 𝑥 ) ) ) ) |