Metamath Proof Explorer


Theorem pjeq

Description: Equality with a projection. (Contributed by NM, 20-Jan-2007) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Assertion pjeq ( ( 𝐻C𝐴 ∈ ℋ ) → ( ( ( proj𝐻 ) ‘ 𝐴 ) = 𝐵 ↔ ( 𝐵𝐻 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝐵 + 𝑥 ) ) ) )

Proof

Step Hyp Ref Expression
1 pjhth ( 𝐻C → ( 𝐻 + ( ⊥ ‘ 𝐻 ) ) = ℋ )
2 1 eleq2d ( 𝐻C → ( 𝐴 ∈ ( 𝐻 + ( ⊥ ‘ 𝐻 ) ) ↔ 𝐴 ∈ ℋ ) )
3 2 biimpar ( ( 𝐻C𝐴 ∈ ℋ ) → 𝐴 ∈ ( 𝐻 + ( ⊥ ‘ 𝐻 ) ) )
4 pjpreeq ( ( 𝐻C𝐴 ∈ ( 𝐻 + ( ⊥ ‘ 𝐻 ) ) ) → ( ( ( proj𝐻 ) ‘ 𝐴 ) = 𝐵 ↔ ( 𝐵𝐻 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝐵 + 𝑥 ) ) ) )
5 3 4 syldan ( ( 𝐻C𝐴 ∈ ℋ ) → ( ( ( proj𝐻 ) ‘ 𝐴 ) = 𝐵 ↔ ( 𝐵𝐻 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝐵 + 𝑥 ) ) ) )