Metamath Proof Explorer


Theorem pjfoi

Description: A projection maps onto its subspace. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypothesis pjfn.1 𝐻C
Assertion pjfoi ( proj𝐻 ) : ℋ –onto𝐻

Proof

Step Hyp Ref Expression
1 pjfn.1 𝐻C
2 1 pjfni ( proj𝐻 ) Fn ℋ
3 1 pjrni ran ( proj𝐻 ) = 𝐻
4 df-fo ( ( proj𝐻 ) : ℋ –onto𝐻 ↔ ( ( proj𝐻 ) Fn ℋ ∧ ran ( proj𝐻 ) = 𝐻 ) )
5 2 3 4 mpbir2an ( proj𝐻 ) : ℋ –onto𝐻