Metamath Proof Explorer
Description: A projection maps onto its subspace. (Contributed by NM, 24-Apr-2006)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypothesis |
pjfn.1 |
⊢ 𝐻 ∈ Cℋ |
|
Assertion |
pjfoi |
⊢ ( projℎ ‘ 𝐻 ) : ℋ –onto→ 𝐻 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
pjfn.1 |
⊢ 𝐻 ∈ Cℋ |
2 |
1
|
pjfni |
⊢ ( projℎ ‘ 𝐻 ) Fn ℋ |
3 |
1
|
pjrni |
⊢ ran ( projℎ ‘ 𝐻 ) = 𝐻 |
4 |
|
df-fo |
⊢ ( ( projℎ ‘ 𝐻 ) : ℋ –onto→ 𝐻 ↔ ( ( projℎ ‘ 𝐻 ) Fn ℋ ∧ ran ( projℎ ‘ 𝐻 ) = 𝐻 ) ) |
5 |
2 3 4
|
mpbir2an |
⊢ ( projℎ ‘ 𝐻 ) : ℋ –onto→ 𝐻 |