Metamath Proof Explorer
		
		
		
		Description:  A projection maps onto its subspace.  (Contributed by NM, 24-Apr-2006)
       (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | pjfn.1 | ⊢ 𝐻  ∈   Cℋ | 
				
					|  | Assertion | pjfoi | ⊢  ( projℎ ‘ 𝐻 ) :  ℋ –onto→ 𝐻 | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjfn.1 | ⊢ 𝐻  ∈   Cℋ | 
						
							| 2 | 1 | pjfni | ⊢ ( projℎ ‘ 𝐻 )  Fn   ℋ | 
						
							| 3 | 1 | pjrni | ⊢ ran  ( projℎ ‘ 𝐻 )  =  𝐻 | 
						
							| 4 |  | df-fo | ⊢ ( ( projℎ ‘ 𝐻 ) :  ℋ –onto→ 𝐻  ↔  ( ( projℎ ‘ 𝐻 )  Fn   ℋ  ∧  ran  ( projℎ ‘ 𝐻 )  =  𝐻 ) ) | 
						
							| 5 | 2 3 4 | mpbir2an | ⊢ ( projℎ ‘ 𝐻 ) :  ℋ –onto→ 𝐻 |