Description: Closure of a projection in Hilbert space. (Contributed by NM, 30-Oct-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | pjhcl | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chss | ⊢ ( 𝐻 ∈ Cℋ → 𝐻 ⊆ ℋ ) | |
2 | 1 | adantr | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → 𝐻 ⊆ ℋ ) |
3 | axpjcl | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 ) | |
4 | 2 3 | sseldd | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ ) |