Metamath Proof Explorer


Theorem pjhcl

Description: Closure of a projection in Hilbert space. (Contributed by NM, 30-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion pjhcl ( ( 𝐻C𝐴 ∈ ℋ ) → ( ( proj𝐻 ) ‘ 𝐴 ) ∈ ℋ )

Proof

Step Hyp Ref Expression
1 chss ( 𝐻C𝐻 ⊆ ℋ )
2 1 adantr ( ( 𝐻C𝐴 ∈ ℋ ) → 𝐻 ⊆ ℋ )
3 axpjcl ( ( 𝐻C𝐴 ∈ ℋ ) → ( ( proj𝐻 ) ‘ 𝐴 ) ∈ 𝐻 )
4 2 3 sseldd ( ( 𝐻C𝐴 ∈ ℋ ) → ( ( proj𝐻 ) ‘ 𝐴 ) ∈ ℋ )