| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id | ⊢ ( ℎ  =  𝐻  →  ℎ  =  𝐻 ) | 
						
							| 2 |  | fveq2 | ⊢ ( ℎ  =  𝐻  →  ( ⊥ ‘ ℎ )  =  ( ⊥ ‘ 𝐻 ) ) | 
						
							| 3 | 2 | rexeqdv | ⊢ ( ℎ  =  𝐻  →  ( ∃ 𝑦  ∈  ( ⊥ ‘ ℎ ) 𝑥  =  ( 𝑧  +ℎ  𝑦 )  ↔  ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝑥  =  ( 𝑧  +ℎ  𝑦 ) ) ) | 
						
							| 4 | 1 3 | riotaeqbidv | ⊢ ( ℎ  =  𝐻  →  ( ℩ 𝑧  ∈  ℎ ∃ 𝑦  ∈  ( ⊥ ‘ ℎ ) 𝑥  =  ( 𝑧  +ℎ  𝑦 ) )  =  ( ℩ 𝑧  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝑥  =  ( 𝑧  +ℎ  𝑦 ) ) ) | 
						
							| 5 | 4 | mpteq2dv | ⊢ ( ℎ  =  𝐻  →  ( 𝑥  ∈   ℋ  ↦  ( ℩ 𝑧  ∈  ℎ ∃ 𝑦  ∈  ( ⊥ ‘ ℎ ) 𝑥  =  ( 𝑧  +ℎ  𝑦 ) ) )  =  ( 𝑥  ∈   ℋ  ↦  ( ℩ 𝑧  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝑥  =  ( 𝑧  +ℎ  𝑦 ) ) ) ) | 
						
							| 6 |  | df-pjh | ⊢ projℎ  =  ( ℎ  ∈   Cℋ   ↦  ( 𝑥  ∈   ℋ  ↦  ( ℩ 𝑧  ∈  ℎ ∃ 𝑦  ∈  ( ⊥ ‘ ℎ ) 𝑥  =  ( 𝑧  +ℎ  𝑦 ) ) ) ) | 
						
							| 7 |  | ax-hilex | ⊢  ℋ  ∈  V | 
						
							| 8 | 7 | mptex | ⊢ ( 𝑥  ∈   ℋ  ↦  ( ℩ 𝑧  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝑥  =  ( 𝑧  +ℎ  𝑦 ) ) )  ∈  V | 
						
							| 9 | 5 6 8 | fvmpt | ⊢ ( 𝐻  ∈   Cℋ   →  ( projℎ ‘ 𝐻 )  =  ( 𝑥  ∈   ℋ  ↦  ( ℩ 𝑧  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝑥  =  ( 𝑧  +ℎ  𝑦 ) ) ) ) |