Metamath Proof Explorer


Theorem pjhfval

Description: The value of the projection map. (Contributed by NM, 23-Oct-1999) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion pjhfval ( 𝐻C → ( proj𝐻 ) = ( 𝑥 ∈ ℋ ↦ ( 𝑧𝐻𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑧 + 𝑦 ) ) ) )

Proof

Step Hyp Ref Expression
1 id ( = 𝐻 = 𝐻 )
2 fveq2 ( = 𝐻 → ( ⊥ ‘ ) = ( ⊥ ‘ 𝐻 ) )
3 2 rexeqdv ( = 𝐻 → ( ∃ 𝑦 ∈ ( ⊥ ‘ ) 𝑥 = ( 𝑧 + 𝑦 ) ↔ ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑧 + 𝑦 ) ) )
4 1 3 riotaeqbidv ( = 𝐻 → ( 𝑧𝑦 ∈ ( ⊥ ‘ ) 𝑥 = ( 𝑧 + 𝑦 ) ) = ( 𝑧𝐻𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑧 + 𝑦 ) ) )
5 4 mpteq2dv ( = 𝐻 → ( 𝑥 ∈ ℋ ↦ ( 𝑧𝑦 ∈ ( ⊥ ‘ ) 𝑥 = ( 𝑧 + 𝑦 ) ) ) = ( 𝑥 ∈ ℋ ↦ ( 𝑧𝐻𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑧 + 𝑦 ) ) ) )
6 df-pjh proj = ( C ↦ ( 𝑥 ∈ ℋ ↦ ( 𝑧𝑦 ∈ ( ⊥ ‘ ) 𝑥 = ( 𝑧 + 𝑦 ) ) ) )
7 ax-hilex ℋ ∈ V
8 7 mptex ( 𝑥 ∈ ℋ ↦ ( 𝑧𝐻𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑧 + 𝑦 ) ) ) ∈ V
9 5 6 8 fvmpt ( 𝐻C → ( proj𝐻 ) = ( 𝑥 ∈ ℋ ↦ ( 𝑧𝐻𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑧 + 𝑦 ) ) ) )