Step |
Hyp |
Ref |
Expression |
1 |
|
chsh |
⊢ ( 𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |
2 |
|
shocsh |
⊢ ( 𝐻 ∈ Sℋ → ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) |
3 |
|
shsss |
⊢ ( ( 𝐻 ∈ Sℋ ∧ ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) → ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ⊆ ℋ ) |
4 |
1 2 3
|
syl2anc2 |
⊢ ( 𝐻 ∈ Cℋ → ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ⊆ ℋ ) |
5 |
|
fveq2 |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ⊥ ‘ 𝐻 ) = ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) |
6 |
5
|
rexeqdv |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ∃ 𝑧 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ↔ ∃ 𝑧 ∈ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ) |
7 |
6
|
rexeqbi1dv |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ∃ 𝑦 ∈ 𝐻 ∃ 𝑧 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ↔ ∃ 𝑦 ∈ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ∃ 𝑧 ∈ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ) |
8 |
7
|
imbi2d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ( 𝑥 ∈ ℋ → ∃ 𝑦 ∈ 𝐻 ∃ 𝑧 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ↔ ( 𝑥 ∈ ℋ → ∃ 𝑦 ∈ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ∃ 𝑧 ∈ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ) ) |
9 |
|
ifchhv |
⊢ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ∈ Cℋ |
10 |
|
id |
⊢ ( 𝑥 ∈ ℋ → 𝑥 ∈ ℋ ) |
11 |
9 10
|
pjhthlem2 |
⊢ ( 𝑥 ∈ ℋ → ∃ 𝑦 ∈ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ∃ 𝑧 ∈ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
12 |
8 11
|
dedth |
⊢ ( 𝐻 ∈ Cℋ → ( 𝑥 ∈ ℋ → ∃ 𝑦 ∈ 𝐻 ∃ 𝑧 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ) |
13 |
|
shsel |
⊢ ( ( 𝐻 ∈ Sℋ ∧ ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) → ( 𝑥 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ↔ ∃ 𝑦 ∈ 𝐻 ∃ 𝑧 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ) |
14 |
1 2 13
|
syl2anc2 |
⊢ ( 𝐻 ∈ Cℋ → ( 𝑥 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ↔ ∃ 𝑦 ∈ 𝐻 ∃ 𝑧 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ) |
15 |
12 14
|
sylibrd |
⊢ ( 𝐻 ∈ Cℋ → ( 𝑥 ∈ ℋ → 𝑥 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) ) |
16 |
15
|
ssrdv |
⊢ ( 𝐻 ∈ Cℋ → ℋ ⊆ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) |
17 |
4 16
|
eqssd |
⊢ ( 𝐻 ∈ Cℋ → ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) = ℋ ) |