Metamath Proof Explorer


Theorem pjhth

Description: Projection Theorem: Any Hilbert space vector A can be decomposed uniquely into a member x of a closed subspace H and a member y of the complement of the subspace. Theorem 3.7(i) of Beran p. 102 (existence part). (Contributed by NM, 23-Oct-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Assertion pjhth ( 𝐻C → ( 𝐻 + ( ⊥ ‘ 𝐻 ) ) = ℋ )

Proof

Step Hyp Ref Expression
1 chsh ( 𝐻C𝐻S )
2 shocsh ( 𝐻S → ( ⊥ ‘ 𝐻 ) ∈ S )
3 shsss ( ( 𝐻S ∧ ( ⊥ ‘ 𝐻 ) ∈ S ) → ( 𝐻 + ( ⊥ ‘ 𝐻 ) ) ⊆ ℋ )
4 1 2 3 syl2anc2 ( 𝐻C → ( 𝐻 + ( ⊥ ‘ 𝐻 ) ) ⊆ ℋ )
5 fveq2 ( 𝐻 = if ( 𝐻C , 𝐻 , ℋ ) → ( ⊥ ‘ 𝐻 ) = ( ⊥ ‘ if ( 𝐻C , 𝐻 , ℋ ) ) )
6 5 rexeqdv ( 𝐻 = if ( 𝐻C , 𝐻 , ℋ ) → ( ∃ 𝑧 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑦 + 𝑧 ) ↔ ∃ 𝑧 ∈ ( ⊥ ‘ if ( 𝐻C , 𝐻 , ℋ ) ) 𝑥 = ( 𝑦 + 𝑧 ) ) )
7 6 rexeqbi1dv ( 𝐻 = if ( 𝐻C , 𝐻 , ℋ ) → ( ∃ 𝑦𝐻𝑧 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑦 + 𝑧 ) ↔ ∃ 𝑦 ∈ if ( 𝐻C , 𝐻 , ℋ ) ∃ 𝑧 ∈ ( ⊥ ‘ if ( 𝐻C , 𝐻 , ℋ ) ) 𝑥 = ( 𝑦 + 𝑧 ) ) )
8 7 imbi2d ( 𝐻 = if ( 𝐻C , 𝐻 , ℋ ) → ( ( 𝑥 ∈ ℋ → ∃ 𝑦𝐻𝑧 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑦 + 𝑧 ) ) ↔ ( 𝑥 ∈ ℋ → ∃ 𝑦 ∈ if ( 𝐻C , 𝐻 , ℋ ) ∃ 𝑧 ∈ ( ⊥ ‘ if ( 𝐻C , 𝐻 , ℋ ) ) 𝑥 = ( 𝑦 + 𝑧 ) ) ) )
9 ifchhv if ( 𝐻C , 𝐻 , ℋ ) ∈ C
10 id ( 𝑥 ∈ ℋ → 𝑥 ∈ ℋ )
11 9 10 pjhthlem2 ( 𝑥 ∈ ℋ → ∃ 𝑦 ∈ if ( 𝐻C , 𝐻 , ℋ ) ∃ 𝑧 ∈ ( ⊥ ‘ if ( 𝐻C , 𝐻 , ℋ ) ) 𝑥 = ( 𝑦 + 𝑧 ) )
12 8 11 dedth ( 𝐻C → ( 𝑥 ∈ ℋ → ∃ 𝑦𝐻𝑧 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑦 + 𝑧 ) ) )
13 shsel ( ( 𝐻S ∧ ( ⊥ ‘ 𝐻 ) ∈ S ) → ( 𝑥 ∈ ( 𝐻 + ( ⊥ ‘ 𝐻 ) ) ↔ ∃ 𝑦𝐻𝑧 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑦 + 𝑧 ) ) )
14 1 2 13 syl2anc2 ( 𝐻C → ( 𝑥 ∈ ( 𝐻 + ( ⊥ ‘ 𝐻 ) ) ↔ ∃ 𝑦𝐻𝑧 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑦 + 𝑧 ) ) )
15 12 14 sylibrd ( 𝐻C → ( 𝑥 ∈ ℋ → 𝑥 ∈ ( 𝐻 + ( ⊥ ‘ 𝐻 ) ) ) )
16 15 ssrdv ( 𝐻C → ℋ ⊆ ( 𝐻 + ( ⊥ ‘ 𝐻 ) ) )
17 4 16 eqssd ( 𝐻C → ( 𝐻 + ( ⊥ ‘ 𝐻 ) ) = ℋ )