Step |
Hyp |
Ref |
Expression |
1 |
|
pjhth |
⊢ ( 𝐻 ∈ Cℋ → ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) = ℋ ) |
2 |
1
|
eleq2d |
⊢ ( 𝐻 ∈ Cℋ → ( 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ↔ 𝐴 ∈ ℋ ) ) |
3 |
|
chsh |
⊢ ( 𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |
4 |
|
shocsh |
⊢ ( 𝐻 ∈ Sℋ → ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) |
5 |
|
shsel |
⊢ ( ( 𝐻 ∈ Sℋ ∧ ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) → ( 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ↔ ∃ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
6 |
3 4 5
|
syl2anc2 |
⊢ ( 𝐻 ∈ Cℋ → ( 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ↔ ∃ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
7 |
2 6
|
bitr3d |
⊢ ( 𝐻 ∈ Cℋ → ( 𝐴 ∈ ℋ ↔ ∃ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
8 |
7
|
biimpa |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ∃ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) |
9 |
3 4
|
syl |
⊢ ( 𝐻 ∈ Cℋ → ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) |
10 |
|
ocin |
⊢ ( 𝐻 ∈ Sℋ → ( 𝐻 ∩ ( ⊥ ‘ 𝐻 ) ) = 0ℋ ) |
11 |
3 10
|
syl |
⊢ ( 𝐻 ∈ Cℋ → ( 𝐻 ∩ ( ⊥ ‘ 𝐻 ) ) = 0ℋ ) |
12 |
|
pjhthmo |
⊢ ( ( 𝐻 ∈ Sℋ ∧ ( ⊥ ‘ 𝐻 ) ∈ Sℋ ∧ ( 𝐻 ∩ ( ⊥ ‘ 𝐻 ) ) = 0ℋ ) → ∃* 𝑥 ( 𝑥 ∈ 𝐻 ∧ ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
13 |
3 9 11 12
|
syl3anc |
⊢ ( 𝐻 ∈ Cℋ → ∃* 𝑥 ( 𝑥 ∈ 𝐻 ∧ ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ∃* 𝑥 ( 𝑥 ∈ 𝐻 ∧ ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
15 |
|
reu5 |
⊢ ( ∃! 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ↔ ( ∃ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ∧ ∃* 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
16 |
|
df-rmo |
⊢ ( ∃* 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐻 ∧ ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
17 |
16
|
anbi2i |
⊢ ( ( ∃ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ∧ ∃* 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ↔ ( ∃ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ∧ ∃* 𝑥 ( 𝑥 ∈ 𝐻 ∧ ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) ) |
18 |
15 17
|
bitri |
⊢ ( ∃! 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ↔ ( ∃ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ∧ ∃* 𝑥 ( 𝑥 ∈ 𝐻 ∧ ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) ) |
19 |
8 14 18
|
sylanbrc |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ∃! 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) |