| Step | Hyp | Ref | Expression | 
						
							| 1 |  | choccl | ⊢ ( 𝐻  ∈   Cℋ   →  ( ⊥ ‘ 𝐻 )  ∈   Cℋ  ) | 
						
							| 2 |  | pjhtheu | ⊢ ( ( ( ⊥ ‘ 𝐻 )  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  ∃! 𝑦  ∈  ( ⊥ ‘ 𝐻 ) ∃ 𝑥  ∈  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) ) | 
						
							| 3 | 1 2 | sylan | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  ∃! 𝑦  ∈  ( ⊥ ‘ 𝐻 ) ∃ 𝑥  ∈  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) ) | 
						
							| 4 |  | simpll | ⊢ ( ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  →  𝐻  ∈   Cℋ  ) | 
						
							| 5 |  | ococ | ⊢ ( 𝐻  ∈   Cℋ   →  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) )  =  𝐻 ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  →  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) )  =  𝐻 ) | 
						
							| 7 | 6 | rexeqdv | ⊢ ( ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  →  ( ∃ 𝑥  ∈  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴  =  ( 𝑦  +ℎ  𝑥 )  ↔  ∃ 𝑥  ∈  𝐻 𝐴  =  ( 𝑦  +ℎ  𝑥 ) ) ) | 
						
							| 8 | 1 | adantr | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  ( ⊥ ‘ 𝐻 )  ∈   Cℋ  ) | 
						
							| 9 |  | chel | ⊢ ( ( ( ⊥ ‘ 𝐻 )  ∈   Cℋ   ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  →  𝑦  ∈   ℋ ) | 
						
							| 10 | 8 9 | sylan | ⊢ ( ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  →  𝑦  ∈   ℋ ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  𝑥  ∈  𝐻 )  →  𝑦  ∈   ℋ ) | 
						
							| 12 |  | chel | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝑥  ∈  𝐻 )  →  𝑥  ∈   ℋ ) | 
						
							| 13 | 4 12 | sylan | ⊢ ( ( ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  𝑥  ∈  𝐻 )  →  𝑥  ∈   ℋ ) | 
						
							| 14 |  | ax-hvcom | ⊢ ( ( 𝑦  ∈   ℋ  ∧  𝑥  ∈   ℋ )  →  ( 𝑦  +ℎ  𝑥 )  =  ( 𝑥  +ℎ  𝑦 ) ) | 
						
							| 15 | 11 13 14 | syl2anc | ⊢ ( ( ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  𝑥  ∈  𝐻 )  →  ( 𝑦  +ℎ  𝑥 )  =  ( 𝑥  +ℎ  𝑦 ) ) | 
						
							| 16 | 15 | eqeq2d | ⊢ ( ( ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  𝑥  ∈  𝐻 )  →  ( 𝐴  =  ( 𝑦  +ℎ  𝑥 )  ↔  𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 17 | 16 | rexbidva | ⊢ ( ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  →  ( ∃ 𝑥  ∈  𝐻 𝐴  =  ( 𝑦  +ℎ  𝑥 )  ↔  ∃ 𝑥  ∈  𝐻 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 18 | 7 17 | bitrd | ⊢ ( ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  →  ( ∃ 𝑥  ∈  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴  =  ( 𝑦  +ℎ  𝑥 )  ↔  ∃ 𝑥  ∈  𝐻 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 19 | 18 | reubidva | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  ( ∃! 𝑦  ∈  ( ⊥ ‘ 𝐻 ) ∃ 𝑥  ∈  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴  =  ( 𝑦  +ℎ  𝑥 )  ↔  ∃! 𝑦  ∈  ( ⊥ ‘ 𝐻 ) ∃ 𝑥  ∈  𝐻 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 20 | 3 19 | mpbid | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  ∃! 𝑦  ∈  ( ⊥ ‘ 𝐻 ) ∃ 𝑥  ∈  𝐻 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) |