| Step |
Hyp |
Ref |
Expression |
| 1 |
|
choccl |
⊢ ( 𝐻 ∈ Cℋ → ( ⊥ ‘ 𝐻 ) ∈ Cℋ ) |
| 2 |
|
pjhtheu |
⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ∃! 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ∃ 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) |
| 3 |
1 2
|
sylan |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ∃! 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ∃ 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) |
| 4 |
|
simpll |
⊢ ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) → 𝐻 ∈ Cℋ ) |
| 5 |
|
ococ |
⊢ ( 𝐻 ∈ Cℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) = 𝐻 ) |
| 6 |
4 5
|
syl |
⊢ ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) = 𝐻 ) |
| 7 |
6
|
rexeqdv |
⊢ ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ∃ 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐻 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) |
| 8 |
1
|
adantr |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ⊥ ‘ 𝐻 ) ∈ Cℋ ) |
| 9 |
|
chel |
⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Cℋ ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) → 𝑦 ∈ ℋ ) |
| 10 |
8 9
|
sylan |
⊢ ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) → 𝑦 ∈ ℋ ) |
| 11 |
10
|
adantr |
⊢ ( ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝑥 ∈ 𝐻 ) → 𝑦 ∈ ℋ ) |
| 12 |
|
chel |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝑥 ∈ 𝐻 ) → 𝑥 ∈ ℋ ) |
| 13 |
4 12
|
sylan |
⊢ ( ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝑥 ∈ 𝐻 ) → 𝑥 ∈ ℋ ) |
| 14 |
|
ax-hvcom |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑦 +ℎ 𝑥 ) = ( 𝑥 +ℎ 𝑦 ) ) |
| 15 |
11 13 14
|
syl2anc |
⊢ ( ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝑥 ∈ 𝐻 ) → ( 𝑦 +ℎ 𝑥 ) = ( 𝑥 +ℎ 𝑦 ) ) |
| 16 |
15
|
eqeq2d |
⊢ ( ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝑥 ∈ 𝐻 ) → ( 𝐴 = ( 𝑦 +ℎ 𝑥 ) ↔ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
| 17 |
16
|
rexbidva |
⊢ ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ∃ 𝑥 ∈ 𝐻 𝐴 = ( 𝑦 +ℎ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐻 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
| 18 |
7 17
|
bitrd |
⊢ ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ∃ 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐻 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
| 19 |
18
|
reubidva |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ∃! 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ∃ 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ↔ ∃! 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ∃ 𝑥 ∈ 𝐻 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
| 20 |
3 19
|
mpbid |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ∃! 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ∃ 𝑥 ∈ 𝐻 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) |