Step |
Hyp |
Ref |
Expression |
1 |
|
choccl |
⊢ ( 𝐻 ∈ Cℋ → ( ⊥ ‘ 𝐻 ) ∈ Cℋ ) |
2 |
|
pjhtheu |
⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ∃! 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ∃ 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ∃! 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ∃ 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) |
4 |
|
simpll |
⊢ ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) → 𝐻 ∈ Cℋ ) |
5 |
|
ococ |
⊢ ( 𝐻 ∈ Cℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) = 𝐻 ) |
6 |
4 5
|
syl |
⊢ ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) = 𝐻 ) |
7 |
6
|
rexeqdv |
⊢ ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ∃ 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐻 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) |
8 |
1
|
adantr |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ⊥ ‘ 𝐻 ) ∈ Cℋ ) |
9 |
|
chel |
⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Cℋ ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) → 𝑦 ∈ ℋ ) |
10 |
8 9
|
sylan |
⊢ ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) → 𝑦 ∈ ℋ ) |
11 |
10
|
adantr |
⊢ ( ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝑥 ∈ 𝐻 ) → 𝑦 ∈ ℋ ) |
12 |
|
chel |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝑥 ∈ 𝐻 ) → 𝑥 ∈ ℋ ) |
13 |
4 12
|
sylan |
⊢ ( ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝑥 ∈ 𝐻 ) → 𝑥 ∈ ℋ ) |
14 |
|
ax-hvcom |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑦 +ℎ 𝑥 ) = ( 𝑥 +ℎ 𝑦 ) ) |
15 |
11 13 14
|
syl2anc |
⊢ ( ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝑥 ∈ 𝐻 ) → ( 𝑦 +ℎ 𝑥 ) = ( 𝑥 +ℎ 𝑦 ) ) |
16 |
15
|
eqeq2d |
⊢ ( ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝑥 ∈ 𝐻 ) → ( 𝐴 = ( 𝑦 +ℎ 𝑥 ) ↔ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
17 |
16
|
rexbidva |
⊢ ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ∃ 𝑥 ∈ 𝐻 𝐴 = ( 𝑦 +ℎ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐻 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
18 |
7 17
|
bitrd |
⊢ ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ∃ 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐻 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
19 |
18
|
reubidva |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ∃! 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ∃ 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ↔ ∃! 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ∃ 𝑥 ∈ 𝐻 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
20 |
3 19
|
mpbid |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ∃! 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ∃ 𝑥 ∈ 𝐻 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) |