Metamath Proof Explorer


Theorem pjhthlem2

Description: Lemma for pjhth . (Contributed by NM, 10-Oct-1999) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses pjhth.1 𝐻C
pjhth.2 ( 𝜑𝐴 ∈ ℋ )
Assertion pjhthlem2 ( 𝜑 → ∃ 𝑥𝐻𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 + 𝑦 ) )

Proof

Step Hyp Ref Expression
1 pjhth.1 𝐻C
2 pjhth.2 ( 𝜑𝐴 ∈ ℋ )
3 2 adantr ( ( 𝜑 ∧ ( 𝑥𝐻 ∧ ∀ 𝑧𝐻 ( norm ‘ ( 𝐴 𝑥 ) ) ≤ ( norm ‘ ( 𝐴 𝑧 ) ) ) ) → 𝐴 ∈ ℋ )
4 1 cheli ( 𝑥𝐻𝑥 ∈ ℋ )
5 4 ad2antrl ( ( 𝜑 ∧ ( 𝑥𝐻 ∧ ∀ 𝑧𝐻 ( norm ‘ ( 𝐴 𝑥 ) ) ≤ ( norm ‘ ( 𝐴 𝑧 ) ) ) ) → 𝑥 ∈ ℋ )
6 hvsubcl ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝐴 𝑥 ) ∈ ℋ )
7 3 5 6 syl2anc ( ( 𝜑 ∧ ( 𝑥𝐻 ∧ ∀ 𝑧𝐻 ( norm ‘ ( 𝐴 𝑥 ) ) ≤ ( norm ‘ ( 𝐴 𝑧 ) ) ) ) → ( 𝐴 𝑥 ) ∈ ℋ )
8 3 adantr ( ( ( 𝜑 ∧ ( 𝑥𝐻 ∧ ∀ 𝑧𝐻 ( norm ‘ ( 𝐴 𝑥 ) ) ≤ ( norm ‘ ( 𝐴 𝑧 ) ) ) ) ∧ 𝑦𝐻 ) → 𝐴 ∈ ℋ )
9 simplrl ( ( ( 𝜑 ∧ ( 𝑥𝐻 ∧ ∀ 𝑧𝐻 ( norm ‘ ( 𝐴 𝑥 ) ) ≤ ( norm ‘ ( 𝐴 𝑧 ) ) ) ) ∧ 𝑦𝐻 ) → 𝑥𝐻 )
10 simpr ( ( ( 𝜑 ∧ ( 𝑥𝐻 ∧ ∀ 𝑧𝐻 ( norm ‘ ( 𝐴 𝑥 ) ) ≤ ( norm ‘ ( 𝐴 𝑧 ) ) ) ) ∧ 𝑦𝐻 ) → 𝑦𝐻 )
11 simplrr ( ( ( 𝜑 ∧ ( 𝑥𝐻 ∧ ∀ 𝑧𝐻 ( norm ‘ ( 𝐴 𝑥 ) ) ≤ ( norm ‘ ( 𝐴 𝑧 ) ) ) ) ∧ 𝑦𝐻 ) → ∀ 𝑧𝐻 ( norm ‘ ( 𝐴 𝑥 ) ) ≤ ( norm ‘ ( 𝐴 𝑧 ) ) )
12 eqid ( ( ( 𝐴 𝑥 ) ·ih 𝑦 ) / ( ( 𝑦 ·ih 𝑦 ) + 1 ) ) = ( ( ( 𝐴 𝑥 ) ·ih 𝑦 ) / ( ( 𝑦 ·ih 𝑦 ) + 1 ) )
13 1 8 9 10 11 12 pjhthlem1 ( ( ( 𝜑 ∧ ( 𝑥𝐻 ∧ ∀ 𝑧𝐻 ( norm ‘ ( 𝐴 𝑥 ) ) ≤ ( norm ‘ ( 𝐴 𝑧 ) ) ) ) ∧ 𝑦𝐻 ) → ( ( 𝐴 𝑥 ) ·ih 𝑦 ) = 0 )
14 13 ralrimiva ( ( 𝜑 ∧ ( 𝑥𝐻 ∧ ∀ 𝑧𝐻 ( norm ‘ ( 𝐴 𝑥 ) ) ≤ ( norm ‘ ( 𝐴 𝑧 ) ) ) ) → ∀ 𝑦𝐻 ( ( 𝐴 𝑥 ) ·ih 𝑦 ) = 0 )
15 1 chshii 𝐻S
16 shocel ( 𝐻S → ( ( 𝐴 𝑥 ) ∈ ( ⊥ ‘ 𝐻 ) ↔ ( ( 𝐴 𝑥 ) ∈ ℋ ∧ ∀ 𝑦𝐻 ( ( 𝐴 𝑥 ) ·ih 𝑦 ) = 0 ) ) )
17 15 16 ax-mp ( ( 𝐴 𝑥 ) ∈ ( ⊥ ‘ 𝐻 ) ↔ ( ( 𝐴 𝑥 ) ∈ ℋ ∧ ∀ 𝑦𝐻 ( ( 𝐴 𝑥 ) ·ih 𝑦 ) = 0 ) )
18 7 14 17 sylanbrc ( ( 𝜑 ∧ ( 𝑥𝐻 ∧ ∀ 𝑧𝐻 ( norm ‘ ( 𝐴 𝑥 ) ) ≤ ( norm ‘ ( 𝐴 𝑧 ) ) ) ) → ( 𝐴 𝑥 ) ∈ ( ⊥ ‘ 𝐻 ) )
19 hvpncan3 ( ( 𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝑥 + ( 𝐴 𝑥 ) ) = 𝐴 )
20 5 3 19 syl2anc ( ( 𝜑 ∧ ( 𝑥𝐻 ∧ ∀ 𝑧𝐻 ( norm ‘ ( 𝐴 𝑥 ) ) ≤ ( norm ‘ ( 𝐴 𝑧 ) ) ) ) → ( 𝑥 + ( 𝐴 𝑥 ) ) = 𝐴 )
21 20 eqcomd ( ( 𝜑 ∧ ( 𝑥𝐻 ∧ ∀ 𝑧𝐻 ( norm ‘ ( 𝐴 𝑥 ) ) ≤ ( norm ‘ ( 𝐴 𝑧 ) ) ) ) → 𝐴 = ( 𝑥 + ( 𝐴 𝑥 ) ) )
22 oveq2 ( 𝑦 = ( 𝐴 𝑥 ) → ( 𝑥 + 𝑦 ) = ( 𝑥 + ( 𝐴 𝑥 ) ) )
23 22 rspceeqv ( ( ( 𝐴 𝑥 ) ∈ ( ⊥ ‘ 𝐻 ) ∧ 𝐴 = ( 𝑥 + ( 𝐴 𝑥 ) ) ) → ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 + 𝑦 ) )
24 18 21 23 syl2anc ( ( 𝜑 ∧ ( 𝑥𝐻 ∧ ∀ 𝑧𝐻 ( norm ‘ ( 𝐴 𝑥 ) ) ≤ ( norm ‘ ( 𝐴 𝑧 ) ) ) ) → ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 + 𝑦 ) )
25 df-hba ℋ = ( BaseSet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
26 eqid ⟨ ⟨ + , · ⟩ , norm ⟩ = ⟨ ⟨ + , · ⟩ , norm
27 26 hhvs = ( −𝑣 ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
28 26 hhnm norm = ( normCV ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
29 eqid ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩ = ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩
30 29 15 hhssba 𝐻 = ( BaseSet ‘ ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩ )
31 26 hhph ⟨ ⟨ + , · ⟩ , norm ⟩ ∈ CPreHilOLD
32 31 a1i ( 𝜑 → ⟨ ⟨ + , · ⟩ , norm ⟩ ∈ CPreHilOLD )
33 26 29 hhsst ( 𝐻S → ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩ ∈ ( SubSp ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) )
34 15 33 ax-mp ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩ ∈ ( SubSp ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
35 29 1 hhssbnOLD ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩ ∈ CBan
36 elin ( ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩ ∈ ( ( SubSp ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ∩ CBan ) ↔ ( ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩ ∈ ( SubSp ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ∧ ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩ ∈ CBan ) )
37 34 35 36 mpbir2an ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩ ∈ ( ( SubSp ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ∩ CBan )
38 37 a1i ( 𝜑 → ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩ ∈ ( ( SubSp ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ∩ CBan ) )
39 25 27 28 30 32 38 2 minveco ( 𝜑 → ∃! 𝑥𝐻𝑧𝐻 ( norm ‘ ( 𝐴 𝑥 ) ) ≤ ( norm ‘ ( 𝐴 𝑧 ) ) )
40 reurex ( ∃! 𝑥𝐻𝑧𝐻 ( norm ‘ ( 𝐴 𝑥 ) ) ≤ ( norm ‘ ( 𝐴 𝑧 ) ) → ∃ 𝑥𝐻𝑧𝐻 ( norm ‘ ( 𝐴 𝑥 ) ) ≤ ( norm ‘ ( 𝐴 𝑧 ) ) )
41 39 40 syl ( 𝜑 → ∃ 𝑥𝐻𝑧𝐻 ( norm ‘ ( 𝐴 𝑥 ) ) ≤ ( norm ‘ ( 𝐴 𝑧 ) ) )
42 24 41 reximddv ( 𝜑 → ∃ 𝑥𝐻𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 + 𝑦 ) )