Step |
Hyp |
Ref |
Expression |
1 |
|
pjhth.1 |
⊢ 𝐻 ∈ Cℋ |
2 |
|
pjhth.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℋ ) |
3 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) ) → 𝐴 ∈ ℋ ) |
4 |
1
|
cheli |
⊢ ( 𝑥 ∈ 𝐻 → 𝑥 ∈ ℋ ) |
5 |
4
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) ) → 𝑥 ∈ ℋ ) |
6 |
|
hvsubcl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝐴 −ℎ 𝑥 ) ∈ ℋ ) |
7 |
3 5 6
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) ) → ( 𝐴 −ℎ 𝑥 ) ∈ ℋ ) |
8 |
3
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) ) ∧ 𝑦 ∈ 𝐻 ) → 𝐴 ∈ ℋ ) |
9 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) ) ∧ 𝑦 ∈ 𝐻 ) → 𝑥 ∈ 𝐻 ) |
10 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) ) ∧ 𝑦 ∈ 𝐻 ) → 𝑦 ∈ 𝐻 ) |
11 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) ) ∧ 𝑦 ∈ 𝐻 ) → ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) |
12 |
|
eqid |
⊢ ( ( ( 𝐴 −ℎ 𝑥 ) ·ih 𝑦 ) / ( ( 𝑦 ·ih 𝑦 ) + 1 ) ) = ( ( ( 𝐴 −ℎ 𝑥 ) ·ih 𝑦 ) / ( ( 𝑦 ·ih 𝑦 ) + 1 ) ) |
13 |
1 8 9 10 11 12
|
pjhthlem1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) ) ∧ 𝑦 ∈ 𝐻 ) → ( ( 𝐴 −ℎ 𝑥 ) ·ih 𝑦 ) = 0 ) |
14 |
13
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) ) → ∀ 𝑦 ∈ 𝐻 ( ( 𝐴 −ℎ 𝑥 ) ·ih 𝑦 ) = 0 ) |
15 |
1
|
chshii |
⊢ 𝐻 ∈ Sℋ |
16 |
|
shocel |
⊢ ( 𝐻 ∈ Sℋ → ( ( 𝐴 −ℎ 𝑥 ) ∈ ( ⊥ ‘ 𝐻 ) ↔ ( ( 𝐴 −ℎ 𝑥 ) ∈ ℋ ∧ ∀ 𝑦 ∈ 𝐻 ( ( 𝐴 −ℎ 𝑥 ) ·ih 𝑦 ) = 0 ) ) ) |
17 |
15 16
|
ax-mp |
⊢ ( ( 𝐴 −ℎ 𝑥 ) ∈ ( ⊥ ‘ 𝐻 ) ↔ ( ( 𝐴 −ℎ 𝑥 ) ∈ ℋ ∧ ∀ 𝑦 ∈ 𝐻 ( ( 𝐴 −ℎ 𝑥 ) ·ih 𝑦 ) = 0 ) ) |
18 |
7 14 17
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) ) → ( 𝐴 −ℎ 𝑥 ) ∈ ( ⊥ ‘ 𝐻 ) ) |
19 |
|
hvpncan3 |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝑥 +ℎ ( 𝐴 −ℎ 𝑥 ) ) = 𝐴 ) |
20 |
5 3 19
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) ) → ( 𝑥 +ℎ ( 𝐴 −ℎ 𝑥 ) ) = 𝐴 ) |
21 |
20
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) ) → 𝐴 = ( 𝑥 +ℎ ( 𝐴 −ℎ 𝑥 ) ) ) |
22 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝐴 −ℎ 𝑥 ) → ( 𝑥 +ℎ 𝑦 ) = ( 𝑥 +ℎ ( 𝐴 −ℎ 𝑥 ) ) ) |
23 |
22
|
rspceeqv |
⊢ ( ( ( 𝐴 −ℎ 𝑥 ) ∈ ( ⊥ ‘ 𝐻 ) ∧ 𝐴 = ( 𝑥 +ℎ ( 𝐴 −ℎ 𝑥 ) ) ) → ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) |
24 |
18 21 23
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) ) → ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) |
25 |
|
df-hba |
⊢ ℋ = ( BaseSet ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
26 |
|
eqid |
⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 |
27 |
26
|
hhvs |
⊢ −ℎ = ( −𝑣 ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
28 |
26
|
hhnm |
⊢ normℎ = ( normCV ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
29 |
|
eqid |
⊢ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 |
30 |
29 15
|
hhssba |
⊢ 𝐻 = ( BaseSet ‘ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ) |
31 |
26
|
hhph |
⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ CPreHilOLD |
32 |
31
|
a1i |
⊢ ( 𝜑 → 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ CPreHilOLD ) |
33 |
26 29
|
hhsst |
⊢ ( 𝐻 ∈ Sℋ → 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ∈ ( SubSp ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) ) |
34 |
15 33
|
ax-mp |
⊢ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ∈ ( SubSp ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
35 |
29 1
|
hhssbnOLD |
⊢ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ∈ CBan |
36 |
|
elin |
⊢ ( 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ∈ ( ( SubSp ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) ∩ CBan ) ↔ ( 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ∈ ( SubSp ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) ∧ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ∈ CBan ) ) |
37 |
34 35 36
|
mpbir2an |
⊢ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ∈ ( ( SubSp ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) ∩ CBan ) |
38 |
37
|
a1i |
⊢ ( 𝜑 → 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ∈ ( ( SubSp ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) ∩ CBan ) ) |
39 |
25 27 28 30 32 38 2
|
minveco |
⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝐻 ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) |
40 |
|
reurex |
⊢ ( ∃! 𝑥 ∈ 𝐻 ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) → ∃ 𝑥 ∈ 𝐻 ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) |
41 |
39 40
|
syl |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐻 ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) |
42 |
24 41
|
reximddv |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) |