| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjhth.1 | ⊢ 𝐻  ∈   Cℋ | 
						
							| 2 |  | pjhth.2 | ⊢ ( 𝜑  →  𝐴  ∈   ℋ ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐻  ∧  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) )  →  𝐴  ∈   ℋ ) | 
						
							| 4 | 1 | cheli | ⊢ ( 𝑥  ∈  𝐻  →  𝑥  ∈   ℋ ) | 
						
							| 5 | 4 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐻  ∧  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) )  →  𝑥  ∈   ℋ ) | 
						
							| 6 |  | hvsubcl | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝑥  ∈   ℋ )  →  ( 𝐴  −ℎ  𝑥 )  ∈   ℋ ) | 
						
							| 7 | 3 5 6 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐻  ∧  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) )  →  ( 𝐴  −ℎ  𝑥 )  ∈   ℋ ) | 
						
							| 8 | 3 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐻  ∧  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) )  ∧  𝑦  ∈  𝐻 )  →  𝐴  ∈   ℋ ) | 
						
							| 9 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐻  ∧  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) )  ∧  𝑦  ∈  𝐻 )  →  𝑥  ∈  𝐻 ) | 
						
							| 10 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐻  ∧  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) )  ∧  𝑦  ∈  𝐻 )  →  𝑦  ∈  𝐻 ) | 
						
							| 11 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐻  ∧  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) )  ∧  𝑦  ∈  𝐻 )  →  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) | 
						
							| 12 |  | eqid | ⊢ ( ( ( 𝐴  −ℎ  𝑥 )  ·ih  𝑦 )  /  ( ( 𝑦  ·ih  𝑦 )  +  1 ) )  =  ( ( ( 𝐴  −ℎ  𝑥 )  ·ih  𝑦 )  /  ( ( 𝑦  ·ih  𝑦 )  +  1 ) ) | 
						
							| 13 | 1 8 9 10 11 12 | pjhthlem1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐻  ∧  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) )  ∧  𝑦  ∈  𝐻 )  →  ( ( 𝐴  −ℎ  𝑥 )  ·ih  𝑦 )  =  0 ) | 
						
							| 14 | 13 | ralrimiva | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐻  ∧  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) )  →  ∀ 𝑦  ∈  𝐻 ( ( 𝐴  −ℎ  𝑥 )  ·ih  𝑦 )  =  0 ) | 
						
							| 15 | 1 | chshii | ⊢ 𝐻  ∈   Sℋ | 
						
							| 16 |  | shocel | ⊢ ( 𝐻  ∈   Sℋ   →  ( ( 𝐴  −ℎ  𝑥 )  ∈  ( ⊥ ‘ 𝐻 )  ↔  ( ( 𝐴  −ℎ  𝑥 )  ∈   ℋ  ∧  ∀ 𝑦  ∈  𝐻 ( ( 𝐴  −ℎ  𝑥 )  ·ih  𝑦 )  =  0 ) ) ) | 
						
							| 17 | 15 16 | ax-mp | ⊢ ( ( 𝐴  −ℎ  𝑥 )  ∈  ( ⊥ ‘ 𝐻 )  ↔  ( ( 𝐴  −ℎ  𝑥 )  ∈   ℋ  ∧  ∀ 𝑦  ∈  𝐻 ( ( 𝐴  −ℎ  𝑥 )  ·ih  𝑦 )  =  0 ) ) | 
						
							| 18 | 7 14 17 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐻  ∧  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) )  →  ( 𝐴  −ℎ  𝑥 )  ∈  ( ⊥ ‘ 𝐻 ) ) | 
						
							| 19 |  | hvpncan3 | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝐴  ∈   ℋ )  →  ( 𝑥  +ℎ  ( 𝐴  −ℎ  𝑥 ) )  =  𝐴 ) | 
						
							| 20 | 5 3 19 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐻  ∧  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) )  →  ( 𝑥  +ℎ  ( 𝐴  −ℎ  𝑥 ) )  =  𝐴 ) | 
						
							| 21 | 20 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐻  ∧  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) )  →  𝐴  =  ( 𝑥  +ℎ  ( 𝐴  −ℎ  𝑥 ) ) ) | 
						
							| 22 |  | oveq2 | ⊢ ( 𝑦  =  ( 𝐴  −ℎ  𝑥 )  →  ( 𝑥  +ℎ  𝑦 )  =  ( 𝑥  +ℎ  ( 𝐴  −ℎ  𝑥 ) ) ) | 
						
							| 23 | 22 | rspceeqv | ⊢ ( ( ( 𝐴  −ℎ  𝑥 )  ∈  ( ⊥ ‘ 𝐻 )  ∧  𝐴  =  ( 𝑥  +ℎ  ( 𝐴  −ℎ  𝑥 ) ) )  →  ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) | 
						
							| 24 | 18 21 23 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐻  ∧  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) )  →  ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) | 
						
							| 25 |  | df-hba | ⊢  ℋ  =  ( BaseSet ‘ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 ) | 
						
							| 26 |  | eqid | ⊢ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉  =  〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 | 
						
							| 27 | 26 | hhvs | ⊢  −ℎ   =  (  −𝑣  ‘ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 ) | 
						
							| 28 | 26 | hhnm | ⊢ normℎ  =  ( normCV ‘ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 ) | 
						
							| 29 |  | eqid | ⊢ 〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉  =  〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉 | 
						
							| 30 | 29 15 | hhssba | ⊢ 𝐻  =  ( BaseSet ‘ 〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉 ) | 
						
							| 31 | 26 | hhph | ⊢ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉  ∈  CPreHilOLD | 
						
							| 32 | 31 | a1i | ⊢ ( 𝜑  →  〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉  ∈  CPreHilOLD ) | 
						
							| 33 | 26 29 | hhsst | ⊢ ( 𝐻  ∈   Sℋ   →  〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉  ∈  ( SubSp ‘ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 ) ) | 
						
							| 34 | 15 33 | ax-mp | ⊢ 〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉  ∈  ( SubSp ‘ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 ) | 
						
							| 35 | 29 1 | hhssbnOLD | ⊢ 〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉  ∈  CBan | 
						
							| 36 |  | elin | ⊢ ( 〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉  ∈  ( ( SubSp ‘ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 )  ∩  CBan )  ↔  ( 〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉  ∈  ( SubSp ‘ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 )  ∧  〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉  ∈  CBan ) ) | 
						
							| 37 | 34 35 36 | mpbir2an | ⊢ 〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉  ∈  ( ( SubSp ‘ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 )  ∩  CBan ) | 
						
							| 38 | 37 | a1i | ⊢ ( 𝜑  →  〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉  ∈  ( ( SubSp ‘ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 )  ∩  CBan ) ) | 
						
							| 39 | 25 27 28 30 32 38 2 | minveco | ⊢ ( 𝜑  →  ∃! 𝑥  ∈  𝐻 ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) | 
						
							| 40 |  | reurex | ⊢ ( ∃! 𝑥  ∈  𝐻 ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) )  →  ∃ 𝑥  ∈  𝐻 ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) | 
						
							| 41 | 39 40 | syl | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐻 ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) | 
						
							| 42 | 24 41 | reximddv | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) |