| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pjhth.1 | 
							⊢ 𝐻  ∈   Cℋ   | 
						
						
							| 2 | 
							
								
							 | 
							pjhth.2 | 
							⊢ ( 𝜑  →  𝐴  ∈   ℋ )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐻  ∧  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) )  →  𝐴  ∈   ℋ )  | 
						
						
							| 4 | 
							
								1
							 | 
							cheli | 
							⊢ ( 𝑥  ∈  𝐻  →  𝑥  ∈   ℋ )  | 
						
						
							| 5 | 
							
								4
							 | 
							ad2antrl | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐻  ∧  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) )  →  𝑥  ∈   ℋ )  | 
						
						
							| 6 | 
							
								
							 | 
							hvsubcl | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  𝑥  ∈   ℋ )  →  ( 𝐴  −ℎ  𝑥 )  ∈   ℋ )  | 
						
						
							| 7 | 
							
								3 5 6
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐻  ∧  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) )  →  ( 𝐴  −ℎ  𝑥 )  ∈   ℋ )  | 
						
						
							| 8 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐻  ∧  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) )  ∧  𝑦  ∈  𝐻 )  →  𝐴  ∈   ℋ )  | 
						
						
							| 9 | 
							
								
							 | 
							simplrl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐻  ∧  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) )  ∧  𝑦  ∈  𝐻 )  →  𝑥  ∈  𝐻 )  | 
						
						
							| 10 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐻  ∧  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) )  ∧  𝑦  ∈  𝐻 )  →  𝑦  ∈  𝐻 )  | 
						
						
							| 11 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐻  ∧  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) )  ∧  𝑦  ∈  𝐻 )  →  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ ( ( ( 𝐴  −ℎ  𝑥 )  ·ih  𝑦 )  /  ( ( 𝑦  ·ih  𝑦 )  +  1 ) )  =  ( ( ( 𝐴  −ℎ  𝑥 )  ·ih  𝑦 )  /  ( ( 𝑦  ·ih  𝑦 )  +  1 ) )  | 
						
						
							| 13 | 
							
								1 8 9 10 11 12
							 | 
							pjhthlem1 | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐻  ∧  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) )  ∧  𝑦  ∈  𝐻 )  →  ( ( 𝐴  −ℎ  𝑥 )  ·ih  𝑦 )  =  0 )  | 
						
						
							| 14 | 
							
								13
							 | 
							ralrimiva | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐻  ∧  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) )  →  ∀ 𝑦  ∈  𝐻 ( ( 𝐴  −ℎ  𝑥 )  ·ih  𝑦 )  =  0 )  | 
						
						
							| 15 | 
							
								1
							 | 
							chshii | 
							⊢ 𝐻  ∈   Sℋ   | 
						
						
							| 16 | 
							
								
							 | 
							shocel | 
							⊢ ( 𝐻  ∈   Sℋ   →  ( ( 𝐴  −ℎ  𝑥 )  ∈  ( ⊥ ‘ 𝐻 )  ↔  ( ( 𝐴  −ℎ  𝑥 )  ∈   ℋ  ∧  ∀ 𝑦  ∈  𝐻 ( ( 𝐴  −ℎ  𝑥 )  ·ih  𝑦 )  =  0 ) ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							ax-mp | 
							⊢ ( ( 𝐴  −ℎ  𝑥 )  ∈  ( ⊥ ‘ 𝐻 )  ↔  ( ( 𝐴  −ℎ  𝑥 )  ∈   ℋ  ∧  ∀ 𝑦  ∈  𝐻 ( ( 𝐴  −ℎ  𝑥 )  ·ih  𝑦 )  =  0 ) )  | 
						
						
							| 18 | 
							
								7 14 17
							 | 
							sylanbrc | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐻  ∧  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) )  →  ( 𝐴  −ℎ  𝑥 )  ∈  ( ⊥ ‘ 𝐻 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							hvpncan3 | 
							⊢ ( ( 𝑥  ∈   ℋ  ∧  𝐴  ∈   ℋ )  →  ( 𝑥  +ℎ  ( 𝐴  −ℎ  𝑥 ) )  =  𝐴 )  | 
						
						
							| 20 | 
							
								5 3 19
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐻  ∧  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) )  →  ( 𝑥  +ℎ  ( 𝐴  −ℎ  𝑥 ) )  =  𝐴 )  | 
						
						
							| 21 | 
							
								20
							 | 
							eqcomd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐻  ∧  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) )  →  𝐴  =  ( 𝑥  +ℎ  ( 𝐴  −ℎ  𝑥 ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑦  =  ( 𝐴  −ℎ  𝑥 )  →  ( 𝑥  +ℎ  𝑦 )  =  ( 𝑥  +ℎ  ( 𝐴  −ℎ  𝑥 ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							rspceeqv | 
							⊢ ( ( ( 𝐴  −ℎ  𝑥 )  ∈  ( ⊥ ‘ 𝐻 )  ∧  𝐴  =  ( 𝑥  +ℎ  ( 𝐴  −ℎ  𝑥 ) ) )  →  ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) )  | 
						
						
							| 24 | 
							
								18 21 23
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐻  ∧  ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) ) )  →  ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							df-hba | 
							⊢  ℋ  =  ( BaseSet ‘ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 )  | 
						
						
							| 26 | 
							
								
							 | 
							eqid | 
							⊢ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉  =  〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉  | 
						
						
							| 27 | 
							
								26
							 | 
							hhvs | 
							⊢  −ℎ   =  (  −𝑣  ‘ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 )  | 
						
						
							| 28 | 
							
								26
							 | 
							hhnm | 
							⊢ normℎ  =  ( normCV ‘ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 )  | 
						
						
							| 29 | 
							
								
							 | 
							eqid | 
							⊢ 〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉  =  〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉  | 
						
						
							| 30 | 
							
								29 15
							 | 
							hhssba | 
							⊢ 𝐻  =  ( BaseSet ‘ 〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉 )  | 
						
						
							| 31 | 
							
								26
							 | 
							hhph | 
							⊢ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉  ∈  CPreHilOLD  | 
						
						
							| 32 | 
							
								31
							 | 
							a1i | 
							⊢ ( 𝜑  →  〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉  ∈  CPreHilOLD )  | 
						
						
							| 33 | 
							
								26 29
							 | 
							hhsst | 
							⊢ ( 𝐻  ∈   Sℋ   →  〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉  ∈  ( SubSp ‘ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 ) )  | 
						
						
							| 34 | 
							
								15 33
							 | 
							ax-mp | 
							⊢ 〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉  ∈  ( SubSp ‘ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 )  | 
						
						
							| 35 | 
							
								29 1
							 | 
							hhssbnOLD | 
							⊢ 〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉  ∈  CBan  | 
						
						
							| 36 | 
							
								
							 | 
							elin | 
							⊢ ( 〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉  ∈  ( ( SubSp ‘ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 )  ∩  CBan )  ↔  ( 〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉  ∈  ( SubSp ‘ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 )  ∧  〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉  ∈  CBan ) )  | 
						
						
							| 37 | 
							
								34 35 36
							 | 
							mpbir2an | 
							⊢ 〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉  ∈  ( ( SubSp ‘ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 )  ∩  CBan )  | 
						
						
							| 38 | 
							
								37
							 | 
							a1i | 
							⊢ ( 𝜑  →  〈 〈 (  +ℎ   ↾  ( 𝐻  ×  𝐻 ) ) ,  (  ·ℎ   ↾  ( ℂ  ×  𝐻 ) ) 〉 ,  ( normℎ  ↾  𝐻 ) 〉  ∈  ( ( SubSp ‘ 〈 〈  +ℎ  ,   ·ℎ  〉 ,  normℎ 〉 )  ∩  CBan ) )  | 
						
						
							| 39 | 
							
								25 27 28 30 32 38 2
							 | 
							minveco | 
							⊢ ( 𝜑  →  ∃! 𝑥  ∈  𝐻 ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) )  | 
						
						
							| 40 | 
							
								
							 | 
							reurex | 
							⊢ ( ∃! 𝑥  ∈  𝐻 ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) )  →  ∃ 𝑥  ∈  𝐻 ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							syl | 
							⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐻 ∀ 𝑧  ∈  𝐻 ( normℎ ‘ ( 𝐴  −ℎ  𝑥 ) )  ≤  ( normℎ ‘ ( 𝐴  −ℎ  𝑧 ) ) )  | 
						
						
							| 42 | 
							
								24 41
							 | 
							reximddv | 
							⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) )  |