| Step | Hyp | Ref | Expression | 
						
							| 1 |  | an4 | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ( ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  ∃ 𝑤  ∈  𝐵 𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) )  ↔  ( ( 𝑥  ∈  𝐴  ∧  ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ∃ 𝑤  ∈  𝐵 𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) ) ) | 
						
							| 2 |  | reeanv | ⊢ ( ∃ 𝑦  ∈  𝐵 ∃ 𝑤  ∈  𝐵 ( 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  𝐶  =  ( 𝑧  +ℎ  𝑤 ) )  ↔  ( ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  ∃ 𝑤  ∈  𝐵 𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 3 |  | simpll1 | ⊢ ( ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ∧  ( ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) ) )  →  𝐴  ∈   Sℋ  ) | 
						
							| 4 |  | simpll2 | ⊢ ( ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ∧  ( ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) ) )  →  𝐵  ∈   Sℋ  ) | 
						
							| 5 |  | simpll3 | ⊢ ( ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ∧  ( ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) ) )  →  ( 𝐴  ∩  𝐵 )  =  0ℋ ) | 
						
							| 6 |  | simplrl | ⊢ ( ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ∧  ( ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 7 |  | simprll | ⊢ ( ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ∧  ( ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 8 |  | simplrr | ⊢ ( ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ∧  ( ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) ) )  →  𝑧  ∈  𝐴 ) | 
						
							| 9 |  | simprlr | ⊢ ( ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ∧  ( ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) ) )  →  𝑤  ∈  𝐵 ) | 
						
							| 10 |  | simprrl | ⊢ ( ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ∧  ( ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) ) )  →  𝐶  =  ( 𝑥  +ℎ  𝑦 ) ) | 
						
							| 11 |  | simprrr | ⊢ ( ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ∧  ( ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) ) )  →  𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) | 
						
							| 12 | 10 11 | eqtr3d | ⊢ ( ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ∧  ( ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) ) )  →  ( 𝑥  +ℎ  𝑦 )  =  ( 𝑧  +ℎ  𝑤 ) ) | 
						
							| 13 | 3 4 5 6 7 8 9 12 | shuni | ⊢ ( ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ∧  ( ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) ) )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) | 
						
							| 14 | 13 | simpld | ⊢ ( ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  ∧  ( ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) ) )  →  𝑥  =  𝑧 ) | 
						
							| 15 | 14 | exp32 | ⊢ ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( ( 𝑦  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  →  ( ( 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  𝐶  =  ( 𝑧  +ℎ  𝑤 ) )  →  𝑥  =  𝑧 ) ) ) | 
						
							| 16 | 15 | rexlimdvv | ⊢ ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( ∃ 𝑦  ∈  𝐵 ∃ 𝑤  ∈  𝐵 ( 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  𝐶  =  ( 𝑧  +ℎ  𝑤 ) )  →  𝑥  =  𝑧 ) ) | 
						
							| 17 | 2 16 | biimtrrid | ⊢ ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( ( ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  ∃ 𝑤  ∈  𝐵 𝐶  =  ( 𝑧  +ℎ  𝑤 ) )  →  𝑥  =  𝑧 ) ) | 
						
							| 18 | 17 | expimpd | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ( ( ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  ∧  ( ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ∧  ∃ 𝑤  ∈  𝐵 𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) )  →  𝑥  =  𝑧 ) ) | 
						
							| 19 | 1 18 | biimtrrid | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ( ( ( 𝑥  ∈  𝐴  ∧  ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ∃ 𝑤  ∈  𝐵 𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) )  →  𝑥  =  𝑧 ) ) | 
						
							| 20 | 19 | alrimivv | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ∀ 𝑥 ∀ 𝑧 ( ( ( 𝑥  ∈  𝐴  ∧  ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ∃ 𝑤  ∈  𝐵 𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) )  →  𝑥  =  𝑧 ) ) | 
						
							| 21 |  | eleq1w | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 ) ) | 
						
							| 22 |  | oveq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  +ℎ  𝑦 )  =  ( 𝑧  +ℎ  𝑦 ) ) | 
						
							| 23 | 22 | eqeq2d | ⊢ ( 𝑥  =  𝑧  →  ( 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ↔  𝐶  =  ( 𝑧  +ℎ  𝑦 ) ) ) | 
						
							| 24 | 23 | rexbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ↔  ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑧  +ℎ  𝑦 ) ) ) | 
						
							| 25 |  | oveq2 | ⊢ ( 𝑦  =  𝑤  →  ( 𝑧  +ℎ  𝑦 )  =  ( 𝑧  +ℎ  𝑤 ) ) | 
						
							| 26 | 25 | eqeq2d | ⊢ ( 𝑦  =  𝑤  →  ( 𝐶  =  ( 𝑧  +ℎ  𝑦 )  ↔  𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 27 | 26 | cbvrexvw | ⊢ ( ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑧  +ℎ  𝑦 )  ↔  ∃ 𝑤  ∈  𝐵 𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) | 
						
							| 28 | 24 27 | bitrdi | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 )  ↔  ∃ 𝑤  ∈  𝐵 𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 29 | 21 28 | anbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑥  ∈  𝐴  ∧  ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 ) )  ↔  ( 𝑧  ∈  𝐴  ∧  ∃ 𝑤  ∈  𝐵 𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) ) ) | 
						
							| 30 | 29 | mo4 | ⊢ ( ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 ) )  ↔  ∀ 𝑥 ∀ 𝑧 ( ( ( 𝑥  ∈  𝐴  ∧  ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ∃ 𝑤  ∈  𝐵 𝐶  =  ( 𝑧  +ℎ  𝑤 ) ) )  →  𝑥  =  𝑧 ) ) | 
						
							| 31 | 20 30 | sylibr | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  ∃ 𝑦  ∈  𝐵 𝐶  =  ( 𝑥  +ℎ  𝑦 ) ) ) |