| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjhfval | ⊢ ( 𝐻  ∈   Cℋ   →  ( projℎ ‘ 𝐻 )  =  ( 𝑧  ∈   ℋ  ↦  ( ℩ 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝑧  =  ( 𝑥  +ℎ  𝑦 ) ) ) ) | 
						
							| 2 | 1 | fveq1d | ⊢ ( 𝐻  ∈   Cℋ   →  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  =  ( ( 𝑧  ∈   ℋ  ↦  ( ℩ 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝑧  =  ( 𝑥  +ℎ  𝑦 ) ) ) ‘ 𝐴 ) ) | 
						
							| 3 |  | eqeq1 | ⊢ ( 𝑧  =  𝐴  →  ( 𝑧  =  ( 𝑥  +ℎ  𝑦 )  ↔  𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 4 | 3 | rexbidv | ⊢ ( 𝑧  =  𝐴  →  ( ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝑧  =  ( 𝑥  +ℎ  𝑦 )  ↔  ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 5 | 4 | riotabidv | ⊢ ( 𝑧  =  𝐴  →  ( ℩ 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝑧  =  ( 𝑥  +ℎ  𝑦 ) )  =  ( ℩ 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑧  ∈   ℋ  ↦  ( ℩ 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝑧  =  ( 𝑥  +ℎ  𝑦 ) ) )  =  ( 𝑧  ∈   ℋ  ↦  ( ℩ 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝑧  =  ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 7 |  | riotaex | ⊢ ( ℩ 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) )  ∈  V | 
						
							| 8 | 5 6 7 | fvmpt | ⊢ ( 𝐴  ∈   ℋ  →  ( ( 𝑧  ∈   ℋ  ↦  ( ℩ 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝑧  =  ( 𝑥  +ℎ  𝑦 ) ) ) ‘ 𝐴 )  =  ( ℩ 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 9 | 2 8 | sylan9eq | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  =  ( ℩ 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) ) |