Description: The projection of a vector in the projection subspace is itself. (Contributed by NM, 9-Apr-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | pjid | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ 𝐻 ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ 𝐻 ) → 𝐻 ∈ Cℋ ) | |
2 | chel | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ 𝐻 ) → 𝐴 ∈ ℋ ) | |
3 | 1 2 | jca | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ 𝐻 ) → ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ) |
4 | pjch | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ∈ 𝐻 ↔ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝐴 ) ) | |
5 | 4 | biimpa | ⊢ ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝐴 ∈ 𝐻 ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝐴 ) |
6 | 3 5 | sylancom | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ 𝐻 ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝐴 ) |