Description: A projection is idempotent. Property (ii) of Beran p. 109. (Contributed by NM, 28-Oct-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pjidm.1 | ⊢ 𝐻 ∈ Cℋ | |
pjidm.2 | ⊢ 𝐴 ∈ ℋ | ||
Assertion | pjidmi | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjidm.1 | ⊢ 𝐻 ∈ Cℋ | |
2 | pjidm.2 | ⊢ 𝐴 ∈ ℋ | |
3 | 1 2 | pjclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 |
4 | 1 2 | pjhclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ |
5 | 1 4 | pjchi | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 ↔ ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |
6 | 3 5 | mpbi | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) |