Metamath Proof Explorer


Theorem pjidmi

Description: A projection is idempotent. Property (ii) of Beran p. 109. (Contributed by NM, 28-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjidm.1 𝐻C
pjidm.2 𝐴 ∈ ℋ
Assertion pjidmi ( ( proj𝐻 ) ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) = ( ( proj𝐻 ) ‘ 𝐴 )

Proof

Step Hyp Ref Expression
1 pjidm.1 𝐻C
2 pjidm.2 𝐴 ∈ ℋ
3 1 2 pjclii ( ( proj𝐻 ) ‘ 𝐴 ) ∈ 𝐻
4 1 2 pjhclii ( ( proj𝐻 ) ‘ 𝐴 ) ∈ ℋ
5 1 4 pjchi ( ( ( proj𝐻 ) ‘ 𝐴 ) ∈ 𝐻 ↔ ( ( proj𝐻 ) ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) = ( ( proj𝐻 ) ‘ 𝐴 ) )
6 3 5 mpbi ( ( proj𝐻 ) ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) = ( ( proj𝐻 ) ‘ 𝐴 )