Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( projℎ ‘ 𝐻 ) = ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ) |
2 |
1
|
fveq1d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ‘ 𝐴 ) ) |
3 |
2
|
oveq1d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) = ( ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ‘ 𝐴 ) ·ih 𝐴 ) ) |
4 |
3
|
breq2d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( 0 ≤ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) ↔ 0 ≤ ( ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ‘ 𝐴 ) ·ih 𝐴 ) ) ) |
5 |
4
|
imbi2d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( ( 𝐴 ∈ ℋ → 0 ≤ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) ) ↔ ( 𝐴 ∈ ℋ → 0 ≤ ( ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ‘ 𝐴 ) ·ih 𝐴 ) ) ) ) |
6 |
|
h0elch |
⊢ 0ℋ ∈ Cℋ |
7 |
6
|
elimel |
⊢ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ∈ Cℋ |
8 |
7
|
pjige0i |
⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ‘ 𝐴 ) ·ih 𝐴 ) ) |
9 |
5 8
|
dedth |
⊢ ( 𝐻 ∈ Cℋ → ( 𝐴 ∈ ℋ → 0 ≤ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) ) ) |
10 |
9
|
imp |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → 0 ≤ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) ) |