| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝐻  =  if ( 𝐻  ∈   Cℋ  ,  𝐻 ,  0ℋ )  →  ( projℎ ‘ 𝐻 )  =  ( projℎ ‘ if ( 𝐻  ∈   Cℋ  ,  𝐻 ,  0ℋ ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							fveq1d | 
							⊢ ( 𝐻  =  if ( 𝐻  ∈   Cℋ  ,  𝐻 ,  0ℋ )  →  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  =  ( ( projℎ ‘ if ( 𝐻  ∈   Cℋ  ,  𝐻 ,  0ℋ ) ) ‘ 𝐴 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							oveq1d | 
							⊢ ( 𝐻  =  if ( 𝐻  ∈   Cℋ  ,  𝐻 ,  0ℋ )  →  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  𝐴 )  =  ( ( ( projℎ ‘ if ( 𝐻  ∈   Cℋ  ,  𝐻 ,  0ℋ ) ) ‘ 𝐴 )  ·ih  𝐴 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							breq2d | 
							⊢ ( 𝐻  =  if ( 𝐻  ∈   Cℋ  ,  𝐻 ,  0ℋ )  →  ( 0  ≤  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  𝐴 )  ↔  0  ≤  ( ( ( projℎ ‘ if ( 𝐻  ∈   Cℋ  ,  𝐻 ,  0ℋ ) ) ‘ 𝐴 )  ·ih  𝐴 ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							imbi2d | 
							⊢ ( 𝐻  =  if ( 𝐻  ∈   Cℋ  ,  𝐻 ,  0ℋ )  →  ( ( 𝐴  ∈   ℋ  →  0  ≤  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  𝐴 ) )  ↔  ( 𝐴  ∈   ℋ  →  0  ≤  ( ( ( projℎ ‘ if ( 𝐻  ∈   Cℋ  ,  𝐻 ,  0ℋ ) ) ‘ 𝐴 )  ·ih  𝐴 ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							h0elch | 
							⊢ 0ℋ  ∈   Cℋ   | 
						
						
							| 7 | 
							
								6
							 | 
							elimel | 
							⊢ if ( 𝐻  ∈   Cℋ  ,  𝐻 ,  0ℋ )  ∈   Cℋ   | 
						
						
							| 8 | 
							
								7
							 | 
							pjige0i | 
							⊢ ( 𝐴  ∈   ℋ  →  0  ≤  ( ( ( projℎ ‘ if ( 𝐻  ∈   Cℋ  ,  𝐻 ,  0ℋ ) ) ‘ 𝐴 )  ·ih  𝐴 ) )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							dedth | 
							⊢ ( 𝐻  ∈   Cℋ   →  ( 𝐴  ∈   ℋ  →  0  ≤  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  𝐴 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							imp | 
							⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  0  ≤  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  𝐴 ) )  |