Metamath Proof Explorer


Theorem pjini

Description: Membership of projection in an intersection. (Contributed by NM, 22-Apr-2001) (New usage is discouraged.)

Ref Expression
Hypotheses pjocin.1 𝐺C
pjocin.2 𝐻C
Assertion pjini ( 𝐴 ∈ ( 𝐺𝐻 ) → ( ( proj𝐺 ) ‘ 𝐴 ) ∈ ( 𝐺𝐻 ) )

Proof

Step Hyp Ref Expression
1 pjocin.1 𝐺C
2 pjocin.2 𝐻C
3 inss1 ( 𝐺𝐻 ) ⊆ 𝐺
4 3 sseli ( 𝐴 ∈ ( 𝐺𝐻 ) → 𝐴𝐺 )
5 pjid ( ( 𝐺C𝐴𝐺 ) → ( ( proj𝐺 ) ‘ 𝐴 ) = 𝐴 )
6 1 4 5 sylancr ( 𝐴 ∈ ( 𝐺𝐻 ) → ( ( proj𝐺 ) ‘ 𝐴 ) = 𝐴 )
7 6 eleq1d ( 𝐴 ∈ ( 𝐺𝐻 ) → ( ( ( proj𝐺 ) ‘ 𝐴 ) ∈ ( 𝐺𝐻 ) ↔ 𝐴 ∈ ( 𝐺𝐻 ) ) )
8 7 ibir ( 𝐴 ∈ ( 𝐺𝐻 ) → ( ( proj𝐺 ) ‘ 𝐴 ) ∈ ( 𝐺𝐻 ) )