Description: Membership of projection in an intersection. (Contributed by NM, 22-Apr-2001) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pjocin.1 | ⊢ 𝐺 ∈ Cℋ | |
pjocin.2 | ⊢ 𝐻 ∈ Cℋ | ||
Assertion | pjini | ⊢ ( 𝐴 ∈ ( 𝐺 ∩ 𝐻 ) → ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ ( 𝐺 ∩ 𝐻 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjocin.1 | ⊢ 𝐺 ∈ Cℋ | |
2 | pjocin.2 | ⊢ 𝐻 ∈ Cℋ | |
3 | inss1 | ⊢ ( 𝐺 ∩ 𝐻 ) ⊆ 𝐺 | |
4 | 3 | sseli | ⊢ ( 𝐴 ∈ ( 𝐺 ∩ 𝐻 ) → 𝐴 ∈ 𝐺 ) |
5 | pjid | ⊢ ( ( 𝐺 ∈ Cℋ ∧ 𝐴 ∈ 𝐺 ) → ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) = 𝐴 ) | |
6 | 1 4 5 | sylancr | ⊢ ( 𝐴 ∈ ( 𝐺 ∩ 𝐻 ) → ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) = 𝐴 ) |
7 | 6 | eleq1d | ⊢ ( 𝐴 ∈ ( 𝐺 ∩ 𝐻 ) → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ ( 𝐺 ∩ 𝐻 ) ↔ 𝐴 ∈ ( 𝐺 ∩ 𝐻 ) ) ) |
8 | 7 | ibir | ⊢ ( 𝐴 ∈ ( 𝐺 ∩ 𝐻 ) → ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ ( 𝐺 ∩ 𝐻 ) ) |