Metamath Proof Explorer


Theorem pjinormi

Description: The inner product of a projection and its argument is the square of the norm of the projection. Remark in Halmos p. 44. (Contributed by NM, 2-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypothesis pjadjt.1 𝐻C
Assertion pjinormi ( 𝐴 ∈ ℋ → ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) = ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) )

Proof

Step Hyp Ref Expression
1 pjadjt.1 𝐻C
2 fveq2 ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ( proj𝐻 ) ‘ 𝐴 ) = ( ( proj𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) )
3 id ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) )
4 2 3 oveq12d ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) = ( ( ( proj𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) )
5 2fveq3 ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) = ( norm ‘ ( ( proj𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) )
6 5 oveq1d ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) = ( ( norm ‘ ( ( proj𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) ↑ 2 ) )
7 4 6 eqeq12d ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) = ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ↔ ( ( ( proj𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) = ( ( norm ‘ ( ( proj𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) ↑ 2 ) ) )
8 ifhvhv0 if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ∈ ℋ
9 1 8 pjinormii ( ( ( proj𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) = ( ( norm ‘ ( ( proj𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) ↑ 2 )
10 7 9 dedth ( 𝐴 ∈ ℋ → ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) = ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) )