Step |
Hyp |
Ref |
Expression |
1 |
|
pjadjt.1 |
⊢ 𝐻 ∈ Cℋ |
2 |
|
fveq2 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) |
3 |
|
id |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) |
4 |
2 3
|
oveq12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) |
5 |
|
2fveq3 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
6 |
5
|
oveq1d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ↑ 2 ) ) |
7 |
4 6
|
eqeq12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ↔ ( ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ↑ 2 ) ) ) |
8 |
|
ifhvhv0 |
⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ |
9 |
1 8
|
pjinormii |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ↑ 2 ) |
10 |
7 9
|
dedth |
⊢ ( 𝐴 ∈ ℋ → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ) |