Metamath Proof Explorer


Theorem pjinormii

Description: The inner product of a projection and its argument is the square of the norm of the projection. Remark in Halmos p. 44. (Contributed by NM, 13-Aug-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjidm.1 𝐻C
pjidm.2 𝐴 ∈ ℋ
Assertion pjinormii ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) = ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 )

Proof

Step Hyp Ref Expression
1 pjidm.1 𝐻C
2 pjidm.2 𝐴 ∈ ℋ
3 1 2 pjhclii ( ( proj𝐻 ) ‘ 𝐴 ) ∈ ℋ
4 3 normsqi ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) = ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih ( ( proj𝐻 ) ‘ 𝐴 ) )
5 1 3 2 pjadjii ( ( ( proj𝐻 ) ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ·ih 𝐴 ) = ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih ( ( proj𝐻 ) ‘ 𝐴 ) )
6 1 2 pjidmi ( ( proj𝐻 ) ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) = ( ( proj𝐻 ) ‘ 𝐴 )
7 6 oveq1i ( ( ( proj𝐻 ) ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ·ih 𝐴 ) = ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih 𝐴 )
8 4 5 7 3eqtr2ri ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) = ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 )