| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjidm.1 | ⊢ 𝐻  ∈   Cℋ | 
						
							| 2 |  | pjidm.2 | ⊢ 𝐴  ∈   ℋ | 
						
							| 3 | 1 2 | pjhclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ∈   ℋ | 
						
							| 4 | 3 | normsqi | ⊢ ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 )  =  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) | 
						
							| 5 | 1 3 2 | pjadjii | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) )  ·ih  𝐴 )  =  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) | 
						
							| 6 | 1 2 | pjidmi | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) )  =  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) | 
						
							| 7 | 6 | oveq1i | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) )  ·ih  𝐴 )  =  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  𝐴 ) | 
						
							| 8 | 4 5 7 | 3eqtr2ri | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ·ih  𝐴 )  =  ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) |