| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjjs.1 |
⊢ 𝐺 ∈ Cℋ |
| 2 |
|
pjjs.2 |
⊢ 𝐻 ∈ Sℋ |
| 3 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ) |
| 4 |
3
|
eleq1d |
⊢ ( 𝑥 = 𝑤 → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑥 ) ∈ 𝐻 ↔ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) ) |
| 5 |
4
|
rspcv |
⊢ ( 𝑤 ∈ ( 𝐺 ∨ℋ 𝐻 ) → ( ∀ 𝑥 ∈ ( 𝐺 ∨ℋ 𝐻 ) ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑥 ) ∈ 𝐻 → ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) ) |
| 6 |
1
|
chshii |
⊢ 𝐺 ∈ Sℋ |
| 7 |
6 2
|
shjcli |
⊢ ( 𝐺 ∨ℋ 𝐻 ) ∈ Cℋ |
| 8 |
7
|
cheli |
⊢ ( 𝑤 ∈ ( 𝐺 ∨ℋ 𝐻 ) → 𝑤 ∈ ℋ ) |
| 9 |
1
|
pjcli |
⊢ ( 𝑤 ∈ ℋ → ( ( projℎ ‘ 𝐺 ) ‘ 𝑤 ) ∈ 𝐺 ) |
| 10 |
9
|
anim1i |
⊢ ( ( 𝑤 ∈ ℋ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑤 ) ∈ 𝐺 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) ) |
| 11 |
|
axpjpj |
⊢ ( ( 𝐺 ∈ Cℋ ∧ 𝑤 ∈ ℋ ) → 𝑤 = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑤 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ) ) |
| 12 |
1 11
|
mpan |
⊢ ( 𝑤 ∈ ℋ → 𝑤 = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑤 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ) ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝑤 ∈ ℋ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) → 𝑤 = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑤 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ) ) |
| 14 |
10 13
|
jca |
⊢ ( ( 𝑤 ∈ ℋ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) → ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑤 ) ∈ 𝐺 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) ∧ 𝑤 = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑤 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ) ) ) |
| 15 |
8 14
|
sylan |
⊢ ( ( 𝑤 ∈ ( 𝐺 ∨ℋ 𝐻 ) ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) → ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑤 ) ∈ 𝐺 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) ∧ 𝑤 = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑤 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ) ) ) |
| 16 |
|
rspceov |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑤 ) ∈ 𝐺 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ∧ 𝑤 = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑤 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ) ) → ∃ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ 𝐻 𝑤 = ( 𝑦 +ℎ 𝑧 ) ) |
| 17 |
16
|
3expa |
⊢ ( ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑤 ) ∈ 𝐺 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) ∧ 𝑤 = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑤 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ) ) → ∃ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ 𝐻 𝑤 = ( 𝑦 +ℎ 𝑧 ) ) |
| 18 |
15 17
|
syl |
⊢ ( ( 𝑤 ∈ ( 𝐺 ∨ℋ 𝐻 ) ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) → ∃ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ 𝐻 𝑤 = ( 𝑦 +ℎ 𝑧 ) ) |
| 19 |
6 2
|
shseli |
⊢ ( 𝑤 ∈ ( 𝐺 +ℋ 𝐻 ) ↔ ∃ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ 𝐻 𝑤 = ( 𝑦 +ℎ 𝑧 ) ) |
| 20 |
18 19
|
sylibr |
⊢ ( ( 𝑤 ∈ ( 𝐺 ∨ℋ 𝐻 ) ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) → 𝑤 ∈ ( 𝐺 +ℋ 𝐻 ) ) |
| 21 |
20
|
ex |
⊢ ( 𝑤 ∈ ( 𝐺 ∨ℋ 𝐻 ) → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 → 𝑤 ∈ ( 𝐺 +ℋ 𝐻 ) ) ) |
| 22 |
5 21
|
syldc |
⊢ ( ∀ 𝑥 ∈ ( 𝐺 ∨ℋ 𝐻 ) ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑥 ) ∈ 𝐻 → ( 𝑤 ∈ ( 𝐺 ∨ℋ 𝐻 ) → 𝑤 ∈ ( 𝐺 +ℋ 𝐻 ) ) ) |
| 23 |
22
|
ssrdv |
⊢ ( ∀ 𝑥 ∈ ( 𝐺 ∨ℋ 𝐻 ) ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑥 ) ∈ 𝐻 → ( 𝐺 ∨ℋ 𝐻 ) ⊆ ( 𝐺 +ℋ 𝐻 ) ) |
| 24 |
6 2
|
shsleji |
⊢ ( 𝐺 +ℋ 𝐻 ) ⊆ ( 𝐺 ∨ℋ 𝐻 ) |
| 25 |
23 24
|
jctir |
⊢ ( ∀ 𝑥 ∈ ( 𝐺 ∨ℋ 𝐻 ) ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑥 ) ∈ 𝐻 → ( ( 𝐺 ∨ℋ 𝐻 ) ⊆ ( 𝐺 +ℋ 𝐻 ) ∧ ( 𝐺 +ℋ 𝐻 ) ⊆ ( 𝐺 ∨ℋ 𝐻 ) ) ) |
| 26 |
|
eqss |
⊢ ( ( 𝐺 ∨ℋ 𝐻 ) = ( 𝐺 +ℋ 𝐻 ) ↔ ( ( 𝐺 ∨ℋ 𝐻 ) ⊆ ( 𝐺 +ℋ 𝐻 ) ∧ ( 𝐺 +ℋ 𝐻 ) ⊆ ( 𝐺 ∨ℋ 𝐻 ) ) ) |
| 27 |
25 26
|
sylibr |
⊢ ( ∀ 𝑥 ∈ ( 𝐺 ∨ℋ 𝐻 ) ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑥 ) ∈ 𝐻 → ( 𝐺 ∨ℋ 𝐻 ) = ( 𝐺 +ℋ 𝐻 ) ) |