Metamath Proof Explorer
Description: Functionality of the projection function. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
pjmfn |
⊢ projℎ Fn Cℋ |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ax-hilex |
⊢ ℋ ∈ V |
2 |
1
|
mptex |
⊢ ( 𝑥 ∈ ℋ ↦ ( ℩ 𝑧 ∈ ℎ ∃ 𝑦 ∈ ( ⊥ ‘ ℎ ) 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) ∈ V |
3 |
|
df-pjh |
⊢ projℎ = ( ℎ ∈ Cℋ ↦ ( 𝑥 ∈ ℋ ↦ ( ℩ 𝑧 ∈ ℎ ∃ 𝑦 ∈ ( ⊥ ‘ ℎ ) 𝑥 = ( 𝑧 +ℎ 𝑦 ) ) ) ) |
4 |
2 3
|
fnmpti |
⊢ projℎ Fn Cℋ |