Metamath Proof Explorer


Theorem pjmfn

Description: Functionality of the projection function. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion pjmfn proj Fn C

Proof

Step Hyp Ref Expression
1 ax-hilex ℋ ∈ V
2 1 mptex ( 𝑥 ∈ ℋ ↦ ( 𝑧𝑦 ∈ ( ⊥ ‘ ) 𝑥 = ( 𝑧 + 𝑦 ) ) ) ∈ V
3 df-pjh proj = ( C ↦ ( 𝑥 ∈ ℋ ↦ ( 𝑧𝑦 ∈ ( ⊥ ‘ ) 𝑥 = ( 𝑧 + 𝑦 ) ) ) )
4 2 3 fnmpti proj Fn C