| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pjadjt.1 | 
							⊢ 𝐻  ∈   Cℋ   | 
						
						
							| 2 | 
							
								
							 | 
							fvoveq1 | 
							⊢ ( 𝐴  =  if ( 𝐴  ∈  ℂ ,  𝐴 ,  0 )  →  ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴  ·ℎ  𝐵 ) )  =  ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴  ∈  ℂ ,  𝐴 ,  0 )  ·ℎ  𝐵 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝐴  =  if ( 𝐴  ∈  ℂ ,  𝐴 ,  0 )  →  ( 𝐴  ·ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) )  =  ( if ( 𝐴  ∈  ℂ ,  𝐴 ,  0 )  ·ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							eqeq12d | 
							⊢ ( 𝐴  =  if ( 𝐴  ∈  ℂ ,  𝐴 ,  0 )  →  ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴  ·ℎ  𝐵 ) )  =  ( 𝐴  ·ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) )  ↔  ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴  ∈  ℂ ,  𝐴 ,  0 )  ·ℎ  𝐵 ) )  =  ( if ( 𝐴  ∈  ℂ ,  𝐴 ,  0 )  ·ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝐵  =  if ( 𝐵  ∈   ℋ ,  𝐵 ,  0ℎ )  →  ( if ( 𝐴  ∈  ℂ ,  𝐴 ,  0 )  ·ℎ  𝐵 )  =  ( if ( 𝐴  ∈  ℂ ,  𝐴 ,  0 )  ·ℎ  if ( 𝐵  ∈   ℋ ,  𝐵 ,  0ℎ ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							fveq2d | 
							⊢ ( 𝐵  =  if ( 𝐵  ∈   ℋ ,  𝐵 ,  0ℎ )  →  ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴  ∈  ℂ ,  𝐴 ,  0 )  ·ℎ  𝐵 ) )  =  ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴  ∈  ℂ ,  𝐴 ,  0 )  ·ℎ  if ( 𝐵  ∈   ℋ ,  𝐵 ,  0ℎ ) ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝐵  =  if ( 𝐵  ∈   ℋ ,  𝐵 ,  0ℎ )  →  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 )  =  ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐵  ∈   ℋ ,  𝐵 ,  0ℎ ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							oveq2d | 
							⊢ ( 𝐵  =  if ( 𝐵  ∈   ℋ ,  𝐵 ,  0ℎ )  →  ( if ( 𝐴  ∈  ℂ ,  𝐴 ,  0 )  ·ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) )  =  ( if ( 𝐴  ∈  ℂ ,  𝐴 ,  0 )  ·ℎ  ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐵  ∈   ℋ ,  𝐵 ,  0ℎ ) ) ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							eqeq12d | 
							⊢ ( 𝐵  =  if ( 𝐵  ∈   ℋ ,  𝐵 ,  0ℎ )  →  ( ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴  ∈  ℂ ,  𝐴 ,  0 )  ·ℎ  𝐵 ) )  =  ( if ( 𝐴  ∈  ℂ ,  𝐴 ,  0 )  ·ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) )  ↔  ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴  ∈  ℂ ,  𝐴 ,  0 )  ·ℎ  if ( 𝐵  ∈   ℋ ,  𝐵 ,  0ℎ ) ) )  =  ( if ( 𝐴  ∈  ℂ ,  𝐴 ,  0 )  ·ℎ  ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐵  ∈   ℋ ,  𝐵 ,  0ℎ ) ) ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							ifhvhv0 | 
							⊢ if ( 𝐵  ∈   ℋ ,  𝐵 ,  0ℎ )  ∈   ℋ  | 
						
						
							| 11 | 
							
								
							 | 
							0cn | 
							⊢ 0  ∈  ℂ  | 
						
						
							| 12 | 
							
								11
							 | 
							elimel | 
							⊢ if ( 𝐴  ∈  ℂ ,  𝐴 ,  0 )  ∈  ℂ  | 
						
						
							| 13 | 
							
								1 10 12
							 | 
							pjmulii | 
							⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴  ∈  ℂ ,  𝐴 ,  0 )  ·ℎ  if ( 𝐵  ∈   ℋ ,  𝐵 ,  0ℎ ) ) )  =  ( if ( 𝐴  ∈  ℂ ,  𝐴 ,  0 )  ·ℎ  ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐵  ∈   ℋ ,  𝐵 ,  0ℎ ) ) )  | 
						
						
							| 14 | 
							
								4 9 13
							 | 
							dedth2h | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ )  →  ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴  ·ℎ  𝐵 ) )  =  ( 𝐴  ·ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) )  |