| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjidm.1 |
⊢ 𝐻 ∈ Cℋ |
| 2 |
|
pjidm.2 |
⊢ 𝐴 ∈ ℋ |
| 3 |
|
pjmul.3 |
⊢ 𝐶 ∈ ℂ |
| 4 |
1 2
|
pjpji |
⊢ 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) |
| 5 |
4
|
oveq2i |
⊢ ( 𝐶 ·ℎ 𝐴 ) = ( 𝐶 ·ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |
| 6 |
1 2
|
pjhclii |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ |
| 7 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
| 8 |
7 2
|
pjhclii |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ |
| 9 |
3 6 8
|
hvdistr1i |
⊢ ( 𝐶 ·ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) = ( ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) +ℎ ( 𝐶 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |
| 10 |
5 9
|
eqtri |
⊢ ( 𝐶 ·ℎ 𝐴 ) = ( ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) +ℎ ( 𝐶 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |
| 11 |
10
|
fveq2i |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐶 ·ℎ 𝐴 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ ( ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) +ℎ ( 𝐶 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) ) |
| 12 |
1
|
chshii |
⊢ 𝐻 ∈ Sℋ |
| 13 |
1 2
|
pjclii |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 |
| 14 |
|
shmulcl |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐶 ∈ ℂ ∧ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 ) → ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ 𝐻 ) |
| 15 |
12 3 13 14
|
mp3an |
⊢ ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ 𝐻 |
| 16 |
7
|
chshii |
⊢ ( ⊥ ‘ 𝐻 ) ∈ Sℋ |
| 17 |
7 2
|
pjclii |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) |
| 18 |
|
shmulcl |
⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Sℋ ∧ 𝐶 ∈ ℂ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) ) → ( 𝐶 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) |
| 19 |
16 3 17 18
|
mp3an |
⊢ ( 𝐶 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) |
| 20 |
1
|
pjcompi |
⊢ ( ( ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ 𝐻 ∧ ( 𝐶 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( projℎ ‘ 𝐻 ) ‘ ( ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) +ℎ ( 𝐶 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) ) = ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 21 |
15 19 20
|
mp2an |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) +ℎ ( 𝐶 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) ) = ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |
| 22 |
11 21
|
eqtri |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐶 ·ℎ 𝐴 ) ) = ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |