Step |
Hyp |
Ref |
Expression |
1 |
|
pjidm.1 |
⊢ 𝐻 ∈ Cℋ |
2 |
|
pjidm.2 |
⊢ 𝐴 ∈ ℋ |
3 |
|
pjmul.3 |
⊢ 𝐶 ∈ ℂ |
4 |
1 2
|
pjpji |
⊢ 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) |
5 |
4
|
oveq2i |
⊢ ( 𝐶 ·ℎ 𝐴 ) = ( 𝐶 ·ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |
6 |
1 2
|
pjhclii |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ |
7 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
8 |
7 2
|
pjhclii |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ |
9 |
3 6 8
|
hvdistr1i |
⊢ ( 𝐶 ·ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) = ( ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) +ℎ ( 𝐶 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |
10 |
5 9
|
eqtri |
⊢ ( 𝐶 ·ℎ 𝐴 ) = ( ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) +ℎ ( 𝐶 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |
11 |
10
|
fveq2i |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐶 ·ℎ 𝐴 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ ( ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) +ℎ ( 𝐶 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) ) |
12 |
1
|
chshii |
⊢ 𝐻 ∈ Sℋ |
13 |
1 2
|
pjclii |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 |
14 |
|
shmulcl |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐶 ∈ ℂ ∧ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 ) → ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ 𝐻 ) |
15 |
12 3 13 14
|
mp3an |
⊢ ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ 𝐻 |
16 |
7
|
chshii |
⊢ ( ⊥ ‘ 𝐻 ) ∈ Sℋ |
17 |
7 2
|
pjclii |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) |
18 |
|
shmulcl |
⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Sℋ ∧ 𝐶 ∈ ℂ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) ) → ( 𝐶 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) |
19 |
16 3 17 18
|
mp3an |
⊢ ( 𝐶 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) |
20 |
1
|
pjcompi |
⊢ ( ( ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ 𝐻 ∧ ( 𝐶 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( projℎ ‘ 𝐻 ) ‘ ( ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) +ℎ ( 𝐶 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) ) = ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
21 |
15 19 20
|
mp2an |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) +ℎ ( 𝐶 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) ) = ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |
22 |
11 21
|
eqtri |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐶 ·ℎ 𝐴 ) ) = ( 𝐶 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |