Metamath Proof Explorer


Theorem pjnel

Description: If a vector does not belong to subspace, the norm of its projection is less than its norm. (Contributed by NM, 2-Nov-1999) (New usage is discouraged.)

Ref Expression
Assertion pjnel ( ( 𝐻C𝐴 ∈ ℋ ) → ( ¬ 𝐴𝐻 ↔ ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) < ( norm𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 eleq2 ( 𝐻 = if ( 𝐻C , 𝐻 , ℋ ) → ( 𝐴𝐻𝐴 ∈ if ( 𝐻C , 𝐻 , ℋ ) ) )
2 1 notbid ( 𝐻 = if ( 𝐻C , 𝐻 , ℋ ) → ( ¬ 𝐴𝐻 ↔ ¬ 𝐴 ∈ if ( 𝐻C , 𝐻 , ℋ ) ) )
3 fveq2 ( 𝐻 = if ( 𝐻C , 𝐻 , ℋ ) → ( proj𝐻 ) = ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) )
4 3 fveq1d ( 𝐻 = if ( 𝐻C , 𝐻 , ℋ ) → ( ( proj𝐻 ) ‘ 𝐴 ) = ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ 𝐴 ) )
5 4 fveq2d ( 𝐻 = if ( 𝐻C , 𝐻 , ℋ ) → ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) = ( norm ‘ ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) )
6 5 breq1d ( 𝐻 = if ( 𝐻C , 𝐻 , ℋ ) → ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) < ( norm𝐴 ) ↔ ( norm ‘ ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) < ( norm𝐴 ) ) )
7 2 6 bibi12d ( 𝐻 = if ( 𝐻C , 𝐻 , ℋ ) → ( ( ¬ 𝐴𝐻 ↔ ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) < ( norm𝐴 ) ) ↔ ( ¬ 𝐴 ∈ if ( 𝐻C , 𝐻 , ℋ ) ↔ ( norm ‘ ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) < ( norm𝐴 ) ) ) )
8 eleq1 ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( 𝐴 ∈ if ( 𝐻C , 𝐻 , ℋ ) ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ∈ if ( 𝐻C , 𝐻 , ℋ ) ) )
9 8 notbid ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ¬ 𝐴 ∈ if ( 𝐻C , 𝐻 , ℋ ) ↔ ¬ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ∈ if ( 𝐻C , 𝐻 , ℋ ) ) )
10 2fveq3 ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( norm ‘ ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) = ( norm ‘ ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) )
11 fveq2 ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( norm𝐴 ) = ( norm ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) )
12 10 11 breq12d ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ( norm ‘ ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) < ( norm𝐴 ) ↔ ( norm ‘ ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) < ( norm ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) )
13 9 12 bibi12d ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ( ¬ 𝐴 ∈ if ( 𝐻C , 𝐻 , ℋ ) ↔ ( norm ‘ ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) < ( norm𝐴 ) ) ↔ ( ¬ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ∈ if ( 𝐻C , 𝐻 , ℋ ) ↔ ( norm ‘ ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) < ( norm ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) ) )
14 ifchhv if ( 𝐻C , 𝐻 , ℋ ) ∈ C
15 ifhvhv0 if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ∈ ℋ
16 14 15 pjneli ( ¬ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ∈ if ( 𝐻C , 𝐻 , ℋ ) ↔ ( norm ‘ ( ( proj ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) < ( norm ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) )
17 7 13 16 dedth2h ( ( 𝐻C𝐴 ∈ ℋ ) → ( ¬ 𝐴𝐻 ↔ ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) < ( norm𝐴 ) ) )